
M2P2 Notes on the Jordan Canonical Form

First, here is the proof of Theorem 16.12 in the lectures (in lectures I
just gave an example illustrating the idea of the proof).

Theorem 16.12 Let W be a vector space and S : W → W a linear
transformation such that Sa = 0 for some positive integer a. Then there is a
basis B ofW such that [S]B is a JCF matrix of the form Jn1(0)⊕∙ ∙ ∙⊕Jnk(0).

Proof As in lecs, for w ∈W , let r be the least positive integer such that
Sr(w) = 0, and define w(S) to be the set of vectors

w(S) = {w,S(w), S2(w), . . . , Sr−1(w)}.

If we can find a basis for W of the form

B = w
(S)
1 ∪ w

(S)
2 ∪ ∙ ∙ ∙ ∪ w

(S)
k , (1)

then [S]B will be the JCF matrix in the conclusion of the theorem.

To show that there is a basis of the form (1), start with a spanning set
of this form: take a spanning set v1, . . . , vn of W and define

C = v
(S)
1 ∪ v

(S)
2 ∪ ∙ ∙ ∙ ∪ v

(S)
n .

Then certainly C spans W . For each i let ri be such that

v
(S)
i = {vi, S(vi), . . . , S

ri−1(vi)}

(so Sri(vi) = 0).

If C is linearly independent then it is a basis of the required form and
we are done. So suppose C is linearly dependent. We show how to replace

one of the sets v
(S)
i by a smaller set v

′(S)
i in such a way that we still have a

spanning set.

Here’s how. Since C is linearly dependent, there is a linear relation of
the form

r1−1∑

j=1

αjS
j(v1) + ∙ ∙ ∙+

rn−1∑

j=1

λjS
j(vn) = 0 (2)

where not all the coefficients are zero. Now apply to both sides the largest
power of S which does not kill (i.e. send to 0) the LHS. This gives an
equation

β1S
r1−1(v1) + ∙ ∙ ∙+ βnS

rn−1(vn) = 0,
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for some scalars βi, where not all the βi are zero. By ordering the original
vi, we may take it that r1 ≤ r2 ≤ ∙ ∙ ∙ ≤ rn. So if βi is the first nonzero
coefficient in the above equation, then

Sri−1(βivi + ∙ ∙ ∙+ βnS
rn−ri(vn)) = 0.

Define v′i = βivi + ∙ ∙ ∙ + βnS
rn−ri(vn), so that v

′
i 6= 0 and S

ri−1(v′i) = 0.

Then the set v
′(S)
i has size at most ri − 1, so is smaller than v

(S)
i . In the

spanning set C, replace v
(S)
i by v

′(S)
i to get

C ′ = v
(S)
1 ∪ ∙ ∙ ∙ v

′(S)
i ∪ ∙ ∙ ∙ ∪ v(S)n .

Then C ′ is smaller than C, but still spans W since the span of C ′ contains
vi (a linear combination of v

′
i and S

j(vl)’s for l 6= i) and similarly contains
all Sj(vi)’s.

Hence we have managed to replace C by a smaller spanning set of the
same form (i.e. of the form (1)). We continue like this, replacing our span-
ning sets by smaller and smaller spanning sets of this form, until we end up
with a basis of the form (1). This completes the proof.

Example Call a basis of the form (1) a Jordan basis of W . Here’s an
example of how to find a Jordan basis of R4 for the matrix

A =







0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0







Let e1, . . . , e4 be the standard basis. Observe that

Ae1 = 0, Ae2 = e1, Ae3 = e1, Ae4 = e2 + e3.

We have e
(A)
4 = {e4, e2 + e3, 2e1} and e

(A)
3 = {e3, e1} and the union of these

two sets spans R4. So let’s start with the spanning set

C = e
(A)
3 ∪ e(A)4 .

This is not a basis, so let’s use the method of the above proof to replace

one of the sets. Tho obvious relation between the vectors e1 ∈ e
(A)
3 and

2e1 ∈ e
(A)
4 gives

2Ae3 −A
2e4 = 0.
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As in the above proof the next step is to hit this with the largest power of
A which does not kill it. But A kills the LHS, so we do not have to do this
step.

The above eqn says A(2e3−Ae4) = 0. So in the set C we replace e
(A)
3 by

e
′(A)
3 = e′3, where e

′
3 = 2e3−Ae4 = e3− e2. So we now have a new spanning

set
C ′ = e3 − e2, e

(A)
4 = e3 − e2, e4, e2 + e3, 2e1.

This is a Jordan basis, and we see that the JCF of A is J1(0)⊕ J3(0).

Now here are some notes on the proof of Theorem 16.11 of lecs, which I
omitted in the lectures.

Theorem 16.11 Let T : V → V be a linear transformation with character-
istic polynomial

p(x) =
k∏

i=1

(x− λi)
ai ,

where λi are the distinct eigenvalues of T . For each i define Vi = ker(T −
λiI)

ai . Then
V = V1 ⊕ ∙ ∙ ∙ ⊕ Vk.

For the proof we need some basic facts about polynomials. Let F = R
or C, and let F [x] be the set of all polynomials in x over F , i.e. the set of all
polys f(x) = anx

n+ ∙ ∙ ∙+a1x+a0 with ai ∈ F . Define the degree deg(f) to
be the highest power of x which appears in f(x) with a nonzero coefficient.
I will often write just f rather than f(x) to save space.

Just as for Z, there is a Euclidean algorithm for polynomials:

Euclidean Algorithm Let f, g be polynomials in F [x] with deg(g) ≥ 1.
Then there are polynomials q, r ∈ F [x] such that

f = qg + r and deg(r) < deg(g).

We call q the quotient and r the remainder. For example, taking f =
x3 + x, g = x2 − x+ 1 we have

x3 + x = (x+ 1)(x2 − x+ 1) + x− 1
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so here q = x+ 1 and r = x− 1.

Not too surprisingly, if f, g are polynomials we say f divides g if g = qf
for some polynomial q. And we say a polynomial d is a highest common
factor of f and g if d is of maximum possible degree among all polynomials
dividing both f and g. Just as you saw for Z in the days of M1F, we can
use the Euclidean algorithm to calculate hcf’s of polys. For example taking
f and g as above, we do the Euc alg:

f = (x+ 1)g + x− 1
g = x(x− 1) + 1

Hence we see that hcf(f, g) = 1.

Just as for Z, we see that

(*) If d = hcf(f, g), then there are polynomials s, t ∈ F [x] such that d =
sf + tg.

For example with f = x3 + x, g = x2 − x+ 1 as above, we have

1 = g − x(x− 1)
= g − x(f − (x+ 1)g)
= −xf + (x2 + x+ 1)g.

Just as for Z in M1F, all this leads quickly to a unique prime factorisation
theorem for polys. For C[x] this just says that every poly is a unique product
of linear factors.

Now we are ready to start the proof of Theorem 16.11. Here is the key
prop:

Proposition Let T : V → V be a linear transformation, and suppose f(x)
and g(x) are polynomials such that hcf(f, g) = 1 and f(T )g(T ) = 0. Then

V = ker(f(T ))⊕ ker(g(T )).

Proof By the fact (*) above, there are polys s, t ∈ F [x] such that 1 =
sf + tg. Applying this to T we get s(T )f(T ) + t(T )g(T ) = I, the identity
map. Hence for any v ∈ V ,

v = I(v) = s(T )f(T )(v) + t(T )g(T )(v).
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The first vector in this sum is in ker(g(T )), since g(T )s(T )f(T )(v) = s(T )f(T )g(T )(v) =
0 (by the assumption that f(T )g(T ) = 0). Similarly the second vector in
the sum is in ker(f(T )). Hence we have shown that any v is the sum of
vectors in these kernels, in other words

V = ker(f(T )) + ker(g(T )).

To show that this is a direct sum, we need to show that the intersection of the
two kernels is 0. But if v ∈ ker(f(T )) ∩ ker(g(T )), then v = s(T )f(T )(v) +
t(T )g(T )(v) = 0, so the intersection is indeed 0. This completes the proof
of the prop.

Since hcf((x − λ1)a1 , (x − λ2)a2) = 1 if λ1 6= λ2 (this follows by unique
factorisation in F [x]), we deduce immediately from the proposition:

Corollary If T : V → V has char poly (x − λ1)a1(x − λ2)a2 then V =
ker(T − λ1I)a1)⊕ ker(T − λ2I)a2).

This is the case k = 2 of Theorem 16.11, and the general case follows
by a straightforward induction on k. Here is the argument. Assume the
hypotheses of Thm 16.11. Define Vi = ker(T − λiI)ai .

Let f(x) = (x − λ1)a1 ∙ ∙ ∙ (x − λk−1)ak−1 and g(x) = (x − λk)ak . Then
hcf(f, g) = 1 (this follows by unique factorisation in F [x]). Of course
f(T )g(T ) = 0 by Cayley-Hamilton, so by the prop

V = ker(f(T ))⊕ ker(g(T )) = ker(f(T ))⊕ Vk.

By induction we have

ker(f(T )) = V1 ⊕ ∙ ∙ ∙ ⊕ Vk−1.

Putting these together, we get V = V1 ⊕ ∙ ∙ ∙ ⊕ Vk−1 ⊕ Vk. This completes
the proof of Theorem 16.11.

Have a great vacation! Don’t work too hard! Well, at least give yourself
a break on Boxing Day....
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