M2P2 Notes on the Jordan Canonical Form

First, here is the proof of Theorem 16.12 in the lectures (in lectures I
just gave an example illustrating the idea of the proof).

Theorem 16.12 Let W be a vector space and S : W — W a linear
transformation such that S* = 0 for some positive integer a. Then there is a
basis B of W such that [S]g is a JCF matriz of the form Jy,, (0)®- - -®Jp, (0).

Proof As in lecs, for w € W, let r be the least positive integer such that
S7(w) = 0, and define w(®) to be the set of vectors

w® = {w, S(w), S*(w),..., 5" L(w)}.

If we can find a basis for W of the form

S)

B:wgs)Uwé U---Uw,(gs), (1)

then [S]|p will be the JCF matrix in the conclusion of the theorem.

To show that there is a basis of the form (1), start with a spanning set
of this form: take a spanning set vy,...,v, of W and define

C:vgs) Uvgs) U---uo®,

n

Then certainly C' spans W. For each ¢ let ; be such that

ol = {vi, S(@i), ..., S" 7 (wi)}

(so S™i(v;) = 0).

If C' is linearly independent then it is a basis of the required form and

we are done. So suppose C' is linearly dependent. We show how to replace
( (5)

Z-S) by a smaller set v:; in such a way that we still have a

one of the sets v
spanning set.

Here’s how. Since C' is linearly dependent, there is a linear relation of
the form

ri—1 rn—1
> S v) + o+ > A (v) =0 (2)
j=1 j=1

where not all the coefficients are zero. Now apply to both sides the largest
power of S which does not kill (i.e. send to 0) the LHS. This gives an
equation

BrS™Hw) + -+ BuS™  (vy) = 0,



for some scalars 3;, where not all the (3; are zero. By ordering the original
v;, we may take it that vy < ro < --- < r,. So if §; is the first nonzero
coefficient in the above equation, then

S'r‘i—l(ﬁivi + “ e —'— ﬁns’l‘n—ri (Un)) = 0

Define v} = Biv; + -+ + £,5™ " (vy,), so that v} # 0 and S""1(v]) = 0.
) In the

Then the set v;(s) has size at most 7; — 1, so is smaller than v,

(5) (S)

spanning set C, replace v;”’ by v; to get

C'zv%s)U---U{(S)U---UU,(LS).

)

Then C’ is smaller than C, but still spans W since the span of C’ contains
v; (a linear combination of v} and S7(v;)’s for | # i) and similarly contains
all S7(v;)’s.

Hence we have managed to replace C' by a smaller spanning set of the
same form (i.e. of the form (1)). We continue like this, replacing our span-
ning sets by smaller and smaller spanning sets of this form, until we end up
with a basis of the form (1). This completes the proof.

Example Call a basis of the form (1) a Jordan basis of W. Here’s an
example of how to find a Jordan basis of R* for the matrix

0 1 10
0 0 01
A_0001
0 00O

Let eq,...,e4 be the standard basis. Observe that

Ae; =0, Aes = e1, Aeg =e1, Aeqg = eg + e3.

We have eflA) = {e4, €2 + €3,2e1} and egA) = {e3,e1} and the union of these

two sets spans R%. So let’s start with the spanning set

C = eéA) U eiA).

This is not a basis, so let’s use the method of the above proof to replace

(4)

one of the sets. Tho obvious relation between the vectors e; € e;’ and

(4)

2e1 € ey ' gives
2A€3 - A264 =0.



As in the above proof the next step is to hit this with the largest power of
A which does not kill it. But A kills the LHS, so we do not have to do this
step.

The above eqn says A(2e3 — Aey) = 0. So in the set C' we replace e:(,)A) by
el = el where ¢}, = 2e5— Aes = e3—ey. S h i
3 = ey, where e = 2es3 €4 = e3 — eo. So we now have a new spanning
set

A)

C' = e3 — e, efl
This is a Jordan basis, and we see that the JCF of A is J1(0) & J3(0).

= €3 — €2,€4,€2 + €3, 261-

Now here are some notes on the proof of Theorem 16.11 of lecs, which I
omitted in the lectures.

Theorem 16.11 Let T : V — V be a linear transformation with character-

istic polynomial
k

p(z) = [z =)™,
i=1
where \; are the distinct eigenvalues of T. For each i define V; = ker(T —
AiI)%. Then
V=& - V.

For the proof we need some basic facts about polynomials. Let FF = R
or C, and let F'[x] be the set of all polynomials in = over F, i.e. the set of all
polys f(z) = apx™ +- -+ a1z + ag with a; € F. Define the degree deg(f) to
be the highest power of z which appears in f(z) with a nonzero coefficient.
I will often write just f rather than f(x) to save space.

Just as for Z, there is a Euclidean algorithm for polynomials:
Euclidean Algorithm Let f,g be polynomials in F|x| with deg(g) > 1.
Then there are polynomials q,r € F[z] such that

f=qg+r anddeg(r) < deg(g).

We call ¢ the quotient and r the remainder. For example, taking f =
3+ 2, g =22 — 2+ 1 we have

B rr=(z+)*-—z+1)+z—1



sohereg=z+1and r=x— 1.

Not too surprisingly, if f, g are polynomials we say f divides g if g = qf
for some polynomial q. And we say a polynomial d is a highest common
factor of f and g if d is of maximum possible degree among all polynomials
dividing both f and g. Just as you saw for Z in the days of M1F, we can
use the Euclidean algorithm to calculate hct’s of polys. For example taking
f and g as above, we do the Euc alg:

f=@+1)g+z—1
g=z(z—1)+1

Hence we see that hef(f,g) = 1.

Just as for Z, we see that

(*) If d = hef(f,g), then there are polynomials s,t € F[z] such that d =
sf+tg.

2

For example with f = 23 4+ z, g = 22 —  + 1 as above, we have

1 =g—xz(z—1)
=g—=z(f - (z+1)g)
= —zf+ (x> +z+1)g.

Just as for Z in M1F, all this leads quickly to a unique prime factorisation
theorem for polys. For C[z] this just says that every poly is a unique product
of linear factors.

Now we are ready to start the proof of Theorem 16.11. Here is the key
prop:

Proposition Let T : V — V be a linear transformation, and suppose f(x)
and g(x) are polynomials such that hef(f,g) =1 and f(T)g(T) = 0. Then

V =ker(f(T)) @ ker(g(T)).

Proof By the fact (*) above, there are polys s,t € F[x] such that 1 =
sf +tg. Applying this to T' we get s(T')f(T) + t(T)g(T') = I, the identity
map. Hence for any v € V,



The first vector in this sum is in ker(g(T")), since g(T")s(T) f(T)(v) = s(T) f(T)g(T)(v) =
0 (by the assumption that f(7")g(7") = 0). Similarly the second vector in

the sum is in ker(f(7")). Hence we have shown that any v is the sum of

vectors in these kernels, in other words

V = ker(f(T)) + ker(g(T)).

To show that this is a direct sum, we need to show that the intersection of the
two kernels is 0. But if v € ker(f(T")) Nker(g(T)), then v = s(T) f(T)(v) +
t(T)g(T)(v) = 0, so the intersection is indeed 0. This completes the proof
of the prop.

Since hef((x — A1)™, (x — A2)?2) = 1 if A\; # A2 (this follows by unique
factorisation in F'[z]), we deduce immediately from the proposition:

Corollary If T : V. — V has char poly (x — A\1)* (x — A2)* then V =
ker(T — M 1)) @ ker(T — A\oI)%2).

This is the case k = 2 of Theorem 16.11, and the general case follows
by a straightforward induction on k. Here is the argument. Assume the
hypotheses of Thm 16.11. Define V; = ker(T" — \;I)%.

Let f(x) = (x — A\)* -+ (z — Ag—1)®-1 and g(z) = (z — A\g)*. Then
hef(f,g) = 1 (this follows by unique factorisation in F[z]). Of course
f(T)g(T) = 0 by Cayley-Hamilton, so by the prop

V =ker(f(T)) @ ker(g(T)) = ker(f(T)) & Vk.
By induction we have
ker(f(T)) =Vi®---& kal-

Putting these together, we get V. =V, @& --- @& Vi_1 @ Vi. This completes
the proof of Theorem 16.11.

Have a great vacation! Don’t work too hard! Well, at least give yourself
a break on Boxing Day....



