M2PM2 Notes

By popular request, here are some notes on the M2PM2 lectures. They
should not be used as a substitute for going to lectures: the notes will just
contain the results, proofs and a few examples. The lectures will hopefully
have much more discussion of the proofs, and many more examples, as well
as fine artwork.....

Like M1P2 last year, this will be a course of two halves:
(A) Group theory; (B) Linear Algebra.

1 Revision from M1P2

Would be a good idea to refresh your memory on the following topics from
group theory.

(a) Group axioms: closure, associativity, identity, inverses

(b) Examples of groups:
(Z,+), (Q,+), (Q*, x), (C*, x), etc

GL(n,R), the group of all invertible n x n matrices over R, under matrix
multiplication

Sp, the symmetric group, the set of all permutations of {1,2,...,n},
under composition. Recall the cycle notation for permutations — every per-
mutation can be expressed as a product of disjoint cycles.

For p prime Z; = {[1],[2],...,[p — 1]} is a group under multiplication
modulo p.
Cp={zeC:2"=1} ={l,w,w? ...,w" 1} is a cyclic group of size n,

where w = e2m/™,

(c) Some theory:

Criterion for subgroups: H is a subgroup of G iff (1) e € H; (2) z,y €
H=zycH,and (3)x € H=2"1€ H.

For a € G, we define the cyclic subgroup (a) = {a™ : n € Z}. The size
of (a) is equal to o(a), the order of a, which is defined to be the smallest
positive integer k such that a* = e.

Lagrange: if H is a subgroup of a finite group G then |H| divides |G]|.

Consequences: (1) For any element a € G, o(a) divides |G]|.



(2) If |G| =nthen 2" =eforallz € G
(3) If |G| is prime then G is a cyclic group.

2 DMore examples: symmetry groups

For any object in the plane R? (later R?) we’ll show how to define a group
called the symmetry group of the object. This group will consist of functions
called isometries, which we now define. Recall for z = (z1,x2), y = (y1,¥2) €
R?, the distance

d(z,y) = V(21 — y1)2 + (32 — 32)2.

We define an isometry of R? to be a bijection f : R? — R? which preserves
distance, i.e. for all z,y € R?,

d(f(z), f(y)) = d(z,y).

There are many familiar examples of isometries:

(1) Rotations: let ppy be the function R? — R? which rotates every
point about P through angle 6. This is an isometry.

(2) Reflections: if [ is a line, let o; be the function which sends every
point to its reflection in [. This is an isometry.

(3) Translations: for a € R?, let 7, be the translation sending = — = +a
for all z € R%. This is an isometry.

Not every isometry is one of these three types — for example a glide-reflection
(i.e. a function of the form 0;07,) is not a rotation, reflection or translation.

Define I(R?) to be the set of all isometries of R?. For isometries f, g, we
have the usual composition function f o g defined by f o g(x) = f(g(z)).

Proposition 2.1 I(R?) is a group under composition.

Proof Closure: Let f,g € I(R?). We must show f o g is an isometry. It is
a bijection as f, g are bijections (recall M1F). And it preserves distance as

d(fog(z), fogly) =d(f(g(z)), f(9(v)))

— d(g(x), 9(y) (as f is isometry)
=d(z,y) (as g is isometry).

Assoc: this is always true for composition of functions (since fo(goh)(z) =

(f 0 g) o h(z) = fg(h(z))))-



Identity is the identity function e defined by e(x) = x for all x € R?, which
is obviously an isometry.

Inverses: let f € I(R?). Then f~! exists as f is a bijection, and f~!
preserves distance since

So we've checked all the axioms and I(R?) is a group. O
Now let II be a subset of R?. For a function g : R? — R2,
g(Il) = {g(z) | = € 1T}

Example: II =square with centre in the origin and aligned with axes,
g = pr/a- Then g(II) is the original square rotated by /4.

Definition The symmetry group of II is G(II) — the set of isometries g such
that g(II) =11, i.e.

G(IT) = {g € I(R?) | g(IT) = I} .

Example: For the square from the previous example, G(II) contains p, o,
Og. ..

Proposition 2.2 G(II) is a subgroup of I(R?).
Proof We check the subgroup criteria:

(1) e € G(II) as e(II) =1II.
(2) Let f,g € G(II), so f(II) = g(II) = II. So

fogl) = f(g(II)) (1)
= f(I) (2)
= 1II (3)
So foge G(II).
(3) Let f e G(II), so
fAD) =11



Apply ! to get

and f~! e G(II). O
So we have a vast collection of new examples of groups G(II).

Examples

1. Equilateral triangle (= II)
Here G(II) contains

3 rotations: € = po, p = Pan/3, P° = Pix/3;

3 reflections: o1 = o0y, 09 = 0,, 03 = 0y,.

Each of these corresponds to a permutation of the corners 1, 2, 3:

e ~ e (6)
p ~ (123), (7)
poo~ (132), (8)
o1~ (23), 9)
oa ~ (13), (10)
o5 ~ (12). (11)

Any isometry in G(II) permutes the corners. Since all the permu-
tations of the corners are already present, there can’t be any more
isometries in G(II). So the Symmetry group of equilateral triangle is

{e7pap2701a02703} )

called the dihedral group Dg.
Note that it is easy to work out products in Dg: e.g.

pos ~ (123)(12)=(13) (12)
~ oy (13)

2. The square
Here G = G(II) contains



4 rotations: e,p,p2,p3 where p = Pr /25
4 reflections: o1,02,03,04 Where o; = 07,.
So |G| > 8. We claim that |G| = 8: Any g € G permutes the corners
1,2,3,4 (as g preserves distance). So g sends
1 — 4, (4 choices of 1)
2 — j, neighbour of ¢, (2 choices for j)
3 — oppositeoft,
4 — oppositeof;.
So |G| < (num. of choices for i) x (for j) =4 x 2 =8. So |G| = 8.

Symmetry group of the square is

2 3
{e,P,P ) P ,01702,03704},

called the dihedral group Dsg.

Can work out products using the corresponding permutations of the
corners.

e ~ e (14)
p ~ (1234), (15)
PP~ (13)(24), (16)
PP~ (1432), (17)
o~ (14)(23), (18)
oz ~ (13), (19)
o3 ~ (12)(34), (20)
oy ~ (24). (21)
For example
pPor — (1432)(14)(23)=(13) (22)
—  0O9. (23)

Note that not all permutations of the corners are present in Dg, e.g.
(12).

More on Dg: Define H to be the cyclic subgroup of Dg generated by

p; SO
H = <p> = {67/)7/)2?:03} .



Write 0 = 01. The right coset
Ho = {0’, po, p2o, p30}
is different from H.

So the two distinct right cosets of H in Dg are H and Ho, and

Dg = H UHo.
Hence
Ho = {p,po,p’c,p’c} (24)
= {0-170-270-?”0-4} . (25)

So the elements of Dg are

e, p,0% 0’0, po, p*o, p*o.

To work out products, use the “magic equation” (see Sheet 1, Question

2)
op = p_la.

. Regular n-gon
Let IT be the regular polygon with n sides. Symmetry group G = G(II)
contains

n rotations: e, p,p?,...,p" 1 where p = P2 /ns

n reflections o1,02,...,0, Where o; = 0y,.

So |G| > 2n. We claim that |G| = 2n.
Any g € G sends corners to corners, say
1 — 4, (n choices for 1)

2 — j mneighbour of 7. (2 choices for j)

Then g sends n to the other neighbour of ¢ and n — 1 to the remaining
neighbour of g(n) and so on. So once i, j are known, there is only one
possibility for g. Hence

|G| < number of choices for i,j = 2n.



Therefore |G| = 2n.

Symmetry group of regular n-gon is
Dy, = {eap7/~’2:---7,0n701>~--7Un}7
the dihedral group of size 2n.
Again can work in D5, using permutations
p — (123 ---n) (26)
or - 2n)Bn-1)--- (27)

4. Benzene molecule
CgHg. Symmetry group is D12.

5. Infinite strip of F’s

F F F
-1 0 1
What is symmetry group G(II)?

G(IT) contains translation
7'(1,0) V= U+ (1,0)

Write 7 = 7(1 g). Then G(II) contains all translations 7" = 7, o). Note
G(II) is infinite. We claim that

GI) = {|neZ} (28)
= (1), (29)
infinite cyclic group.

Let g € G(IT). Must show that g = 7™ for some n. Say g sends F at 0
to F at n. Note that 77" sends F at n to F at 0. So 77 "¢ sends F at 0
to F at 0. So 77 "¢ is a symmetry of the F at 0. It is easy to observe
that F has only symmetry e. Hence

T g = e (30)
g = ™ (31)
g = 1" (32)

Note Various other figures have more interesting symmetry groups, e.g.
infinite strip of E’s, square tiling of a plane, octagons and squares tiling of
the plane, 3 dimensions — platonic solids. . . later.



3 Isomorphism

Let G = Cy = {1,—-1}, H = S = {e,a} (where a = (12)). Multiplication
tables:

Oof G: 1 -1
1 1 -1
-1 -1 1
Of H : e a
ele a
ala e

These are the same, except that the elements have different labels (1 ~ e,
—1~a).

Similarly for G = C3 = {l,w,w?}, H = (a) = {e,a,a®} (where a =
(123) S Sg):

Oof G: 1 w w?
1 1 w w?
wlw w1
Wwlw? 1w

Of H : e a a?
ele a a?

a a® e
a’®|a® e a

Again, these are same groups with relabelling

1 ~

e?
w ~ a,
w? ~

In these examples, there is a “relabelling” function ¢ : G — H such that if
g1+ hi,
g2 — h27
then
9192 — hihs.
Definition G, H groups. A function ¢ : G — H is an isomorphism if
(1) ¢ is a bijection,
(2) ¢(91)9(g2) = ¢(g192) for all g1, g2 € G.



If there exists an isomorphism ¢ : G — H, we say G is isomorphic to H
and write G = H.

Notes 1. If G = H then |G| = |H| (as ¢ is a bijection).

2. The relation = is an equivalence relation, i.e.
e GG,
e G=H=H=QgG,
e GZEHH>2K=G=K.
Example Which pairs of the following groups are isomorphic?

Gl = 04: <Z> = {17_177:5 _Z}v
G2 = symmetry group of a rectangle = {e, pr, 01,02},
G3 = cyclic subgroup of Dg (p) = {e, P, P2, ,03} .

1. G1 2 G357 To prove this, define ¢ : G; — G2

ioop,
-1 = P
—i = P
1 — e,

ie. ¢ : 1"+ p". To check that ¢ is an isomorphism
(1) ¢ is a bijection,

(2) form,ne€Z
p(imi") = (i)
— pm+n
= o(i™)p(i").
So ¢ is an isomorphism and G & G3.

Note that there exist many bijections G; — (3 which are not isomor-
phisms.

2. G2 =2 G5 or Gy = G17 Answer: G2 % G1. By contradiction. Assume
there exists an isomorphism ¢ : G; — Ga. Say ¢(i) = x € Ga, ¢(1) =y €
GQ. Then

$(—1) = ¢(i%) = ¢(i - i) = i) p(i) = 2° = e



as g2 = e for all g € Go. Similarly ¢(1) = ¢(1-1) = ¢(1)é(1) = y?> = e. So
d(—1) = ¢(1), a contradiction as ¢ is a bijection.

In general, to decide whether two groups G, H are isomorphic:

e If you think G = H, try to define an isomorphism ¢ : G — H.

e If you think G 2 H, try to use the following proposition.

Proposition 3.1 Let G, H be groups.
(1) If |G| # |H| then G % H.
(2) If G is abelian and H is not abelian, then G % H.

(8) If there is an integer k such that G and H have different number of
elements of order k, then G 2 H.

Proof (1) Obvious.

(2) We show that if G is abelian and G = H, then H is abelian (this
gives (2)). Suppose G is abelian and ¢ : G — H is an isomorphism. Let
hi,he € H. As ¢ is a bijection, there exist g1, g2 € G such that h; = ¢(g1)
and hy = ¢(g2). So

hohi = $(g2)9(g1)

I

< S

—~

Q 9
S =R

=2

Q

M

~—

(3) Let
Gr, = {9€G|olg) =k},
H, = {heH|oh)=k}.

We show that G = H implies |G| = |Hg| for all k (this gives (3)).

Suppose G = H and let ¢ : G — H be an isomorphism. We show that
¢ sends Gy, to Hy: Let g € Gi, so o(g) =k, i.e.

¢ =eq, and g' £egfor1 <i<k-—1.

Now ¢(eq) = ep, since

P(ec) = ¢(egea)

= ¢leg)o(eq)
deq) toleq) = oleq)
€H = ¢(eq)-



Also
-+g) (i times)

— b(gg-
= ¢(g§¢(g) - 9(9)

Hence
o(9)* = ¢leg) = em,
o(g) # egforl<i<k-—1.

In other words, ¢(g) has order k, so ¢(g) € Hy. So ¢ sends Gy, to Hy. As ¢
is 1-1, this implies |G| < |Hy|.

Also ¢! : H — @G is an isomorphism and similarly sends Hj to Gy,
hence |Hy| < |Gg|. Therefore |G| = |Hg|. O

Examples 1. Let G =S4, H = Dg. Then |G| =24, |H| =8,s0 G ¥ H.
2. Let G = S3, H = Cg. Then G is non-abelian, H is abelian, so G % H.

3. Let G = C4, H = symmetry group of the rectangle = {e, pr,01,02}.
Then G has 1 element of order 2, H has 3 elements of order 2, so G 2 H.

4. Question: (R,+) = (R*, x)? Answer: No, since (R, +) has 0 elements
of order 2, (R*, x) has 1 element of order 2.

Cyclic groups

Proposition 3.2 (1) If G is a cyclic group of size n, then G = C,,.
(2) If G is an infinite cyclic group, then G = (Z,+).

Proof (1) Let G = (z), |G| =n, so o(z) = n and therefore
G= {e,w,x2,...,w”_1}.

Recall
C, = {1,w,w2,... ,w”_l} ,

where w = €2™/™, Define ¢ : G — G by ¢(z") = w" for all . Then ¢ is a
bijection, and

P(z"z) = Gz’

wr+s

= oa")p(z).

So ¢ is an isomorphism, and G = C,,.

11



(2) Let G = (x) be infinite cyclic, so o(z) = oo and
G= {...,x_Z,x_l,e,x,xQ,x?’,...},
all distinct. Define ¢ : G — (Z,+) by ¢(x") = r for all r. Then ¢ is an
isomorphism, so G = (Z,+). O

This proposition says that if we think of isomorphic groups as being

“the same”, then there is only one cyclic group of each size. We say: “up

to isomorphism”, the only cyclic groups are C,, and (Z, +).

Example Cyclic subgroup (3) of (Z,+) is {3n | n € Z}, infinite, so by the
proposition (3) = (Z, +).

4 Even and odd permutations

We'll classify each permutation in S, as either “even” or “odd” (reason given
later).

Example For n = 3. Consider the expression

A = (21 — x2)(z1 — 23) (22 — 23),

a polynomial in 3 variables x1, x2, x3. Take each permutation in S3 to
permute x1, 9,3 in the same way it permutes 1,2,3. Then each g € S3
sends A to £A. For example

fore,(123),(132): A +A,
for (12),(13),(23): A —A.
Generalizing this: for arbitrary n > 2, define

A=]]@i—=),

1<J
a polynomial in n variables z1, ..., Zy,.
If we let each permutation g € S, permute the variables x1, ..., x, just

as it permutes 1,...,n then g sends A to +A.

Definition For g € S, define the signature sgn(g) to be +1 if g(A) = A
and —1 if g(A) = —A. So

g(A) = sgn(g)A.

12



The function sgn : S, — {+1,—1} is the signature function on S,. Call g
an even permutation if sgn(g) = 1, and odd permutation if sgn(g) = —1.

Example In S e, (12 3),(1 3 2) are even and (1 2), (1 3), (2 3) are odd.

Given (123 5)(6 79)(8 4 10) € Sy9, what’s its signature ? Our next
aim is to be able answer such questions instantaneously. This is the key:

Proposition 4.1  (a) sgn(zy) = sgn(z)sgn(y) for all z,y € S,

(b) sgn(e) =1, sgn(z~!) = sgn(x).
(c) If t = (i j) is a 2-cycle then sgn(t) = —1.

Proof (a) By definition

So
zy(A) = z(y(A))
= z(sgn(y)A)
= sgn(y)z(A) = sgn(y)sgn(z)A.
Hence

sgn(zy) = sgn(z)sgn(y).
(b) We have e(A) = A, so sgn(e) = 1. So
1 = sgn(e) =sgn(zz 1)
= sgn(z)sgn(z™!) (by (a))

and hence sgn(z) = sgn(z~1).
(c) Let t = (i j), i < j. We count the number of brackets in A that are
sent to brackets (z, — x5), r > s. These are

(1'2' _xj)v
(i = Tig1)s - (T — @j-1),
(Ti41 — 2j), .- (Tj—1 — 25).

Total number of these is 2(j —i —1) + 1, an odd number. Hence t(A) = —A
and sgn(t) = —1. O

To work out sgn(x), x € S, here’s what we shall do:

13



e express x as a product of 2-cycles

e use proposition 4.1

Proposition 4.2 Let c = (ajaz...a,), an r-cycle. Then c can be expressed
as a product of (r — 1) 2-cycles.

Proof Consider the product
(arar)(arar—1) - - - (aras)(araz).
This product sends
A1 Qg > A3 5 - — Qp_1 > Q1.
Hence the product is equal to ¢.
Corollary 4.3 The signature of an r-cycle is (—1)"71.
Proof Follows from previous two props. [

Corollary 4.4 FEvery x € S, can be expressed as a product of 2-cycles.

Proof From first year, we know that
T =C1"""Cm,

a product of disjoint cycles ¢;. Each ¢; is a product of 2-cycles by 4.2. Hence
so is . [

Proposition 4.5 Let x = ¢y - ¢y a product of disjoint cycles c1, ..., ¢y of
lengths T1,...,7m. Then

sgn(z) = (-1)"* 7t (=1L
Proof We have

sgn(z) = sgn(cp)---sgn(ey) by 4.1(a)
= (=1t (=1)rm~1 by 4.3.

Example (125 7)(346)(89)(10 12 83)(79 11 26 15) has sgn = —1.

Importance of signature
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1. We'll use it to define a new family of groups below.

2. Fundamental in the theory of determinants (later).

Definition Define
A, ={z €S, |sgn(x) =1},

the set of even permutations in S,. Call A,, the alternating group (after
showing that it is a group).

Theorem 4.6 A, is a subgroup of S,, of size %n!.

Proof (a) A, is a subgroup:
(1) e € A, as sgn(e) = 1.

(2) for x,y € Ay,
sgn(z) = sgn(y) =1,
sgn(zy) = sgn(z)sgn(y) =1,
so xy € Ay,

(3) for z € A,, we have sgn(z) = 1, so by 4.1(b), sgn(z™1) = 1, i.e.
z e A,

(b) |A,| = 3n!: Recall that there are right cosets of A,
Ap=A4,e,A,12)={z(12) |z € A,}.

These cosets are distinct (as (1 2) € A, (1 2) but (12) ¢ A,,), and have equal
size (i.e. |An| = |An(1 2)]). We show that S, = A, U A,(1 2): Let g € S,,.
If g is even, then g € A,. If g is odd, then g(1 2) is even (as sgn(g(1l 2)) =
sgn(g)sgn(l 2) =1),s0 g(12) =z € A,,. Then g = z(1 2) € A,(1 2).

So [Ay| = 3[Sa| = 3nl. O

Examples

1. A3 ={e,(123),(132)}, size 3 =33
2. A4Z
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cycle shape || e | (2) | (3) | (4) | (2,2) |
in A4? || yes | no | yes | no | yes
no. || 1 8 3

Total [A4| = 12 = L4,

3. A5:
cycleshape [ e [ (2) | 3) | (@] ()] (2,2) | (3,2) |
in As? || yes | no | yes | no | yes | yes no
no. || 1 20 24 |15

Total |As| = 60 = 35!.

5 Direct Products

So far, we’ve seen the following examples of finite groups: Cp,, Dan, Sn, An.
We’ll get many more using the following construction.

Recall: if T7,T5, ..., T, are sets, the Cartesian product Th x To X -+ - x T,
is the set consisting of all n-tuples (t1,ts,...,t,) with ¢t; € T;.

Now let G1,Gs,...,G, be groups. Form the Cartesian product G X
Go X -+ x G, and define multiplication on this set by

(T15- -, @) (Y15 -+, Un) = (T1Y15 - -+, TnYn)
for x;,y; € G;.
Definition Call G; X - - - x Gy, the direct product of the groups Gi,...,G,.

Proposition 5.1 Under above defined multiplication, Gy X --- X Gy, is a
group.

Proof
e (Closure True by closure in each G;.
o Associativity Using associativity in each Gj,

(1, Tn) (Y1, s Un)] (21505 20) = (Z1Y1, -y TnYn) (21, -« -y 2n)
((xlyl)zla ) (ajnyn)zn)

Exl(ylzl)a cee 7xn(ynzn))
(

T1,- -, Tn) (Y121, - - -, YnZn)
TlyeeosTn) [(Y1y- s Un) (21, -0y 20)] -
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o Identity is (e1,...,ey), where e; is the identity of G;.

e Inverse of (x1,...,2y,) is (z7%, ..., 2;0).

Examples

1. Somenewgroups: CQXCQ,CQXCQXCQ,S4XD36,A5XA6XSQQ7,...,ZX
Q X 513,.‘..

2. Consider Cy x Cy. Elements are {(1,1),(1,-1),(—1,1),(-1,—-1)}.
Calling these e, a, b, ab, mult table is

le [a [b |ab]
el e b | ab
alla |e |ab|b
blb |able |a
abllab|b |a |e

G = Cy x Cy is abelian and 22 = e for all z € G.

3. Similarly Co x Cy x Co has elements (+1,+1,+1), size 8, abelian,

22 = e for all .

Proposition 5.2 (a) Size of G1 X -+ X Gy, is |G1]|G2] -+ |Gy].
(b) If all G; are abelian so is G1 X -+ X Gy,

(c) If x = (x1,...,2,) € Gy X-+-X Gy, then order of x is the least common
multiple of o(x1),...,0(xy).

Proof (a) Clear.
(b) Suppose all G; are abelian. Then

($17"'7mn)(y17""yn) = ($1y17"'7xnyn)
= (y1$1a'--7yna7n)
= (y17"'7yn)(x17"'?xn).
(c) Let r; = o(z;). Recall from M1P2 that ¥ = e iff r;j|k. Let r =
lem(ry,...,7m,). Then
= (xf,...,z))
= (e1,...,en) =e.
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For 1 <s <, r; /s for some i. So z} # e. So

¥ =(...,xl,...) #(e1,...,en).
Hence r = o(x). O
Examples

1. Since cyclic groups C, are abelian, so are all direct products

Cry X Cry X =X Cpp.

2. C4 x Cy and Cy x Cy x Cy are abelian of size 8. Are they isomorphic?
Claim: NO.

Proof Count the number of elements of order 2 :

In Cy x Cy these are (41, +1) except for (1,1), so there are 3.

In C5 x Cy x Oy, all the elements except e have order 2, so there
are 7.

So Cy x Cy 2 Cy x Cy x Cs.
Proposition 5.3 If hcf(m,n) =1, then Cp, x Cp, = Cppy.-
Proof Let C,, = (o), Cp, = (B). So o(a) = m, o(3) = n. Consider
z = (o, ) € Cpy X Ch.
By 5.2(c), o(z) = lem(m,n) = mn. Hence cyclic subgroup (x) of Cp, x C,,
has size mn, so is whole of C,,, x Cy,. So Cy, x Cy, = (x) is cyclic and hence

Chp X Cpy 22 Co by 2.2. O

Direct products are fundamental to the theory of abelian groups:

Theorem 5.4 Every finite abelian group is isomorphic to a direct product
of cyclic groups.

Won't give a proof here. Reference: [Allenby, p. 254].

Examples
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1. Abelian groups of size 6: by theorem 5.4, possibilities are Cg, C3 x Cs.
By 5.3, these are isomorphic, so there is only one abelian group of size
6 (up to isomorphism).

2. By 5.4, the abelian groups of size 8 are: Cg, Cy x Co, Cy x Cy x Cs.
Claim : No two of these are isomorphic.
Proof

Group HC2><C'2><C'2‘C’4><CQ‘CS‘
[{z [o(z) =2}] 7 [ 3 J1]

So up to isomorphism, there are 3 abelian groups of size 8.

6 Groups of small size

We'll find all groups of size < 7 (up to isomorphism). Useful results:
Proposition 6.1 If |G| =p, a prime, then G = C,,.

Proof By corollary of Lagrange, G is cyclic. Hence G = C,, by 2.2.

Proposition 6.2 If |G| is even, then G contains an element of order 2.

Proof Suppose |G| is even and G has no element of order 2. List the
elements of G as follows:

e,ml,mfl,mg,mgl, e ,mk,xlzl.
Note that x; # x; ! since o(z;) # 2. Hence |G| = 2k + 1, a contradiction. O

Groups of size 1,2,3,5,7
By 6.1, only such groups are Cy,Cs, Cs, C5, C.

Groups of size 4
Proposition 6.3 The only groups of size 4 are Cy and Co x Cs.
Proof Let |G| = 4. By Lagrange, every element of G has order 1,2 or 4.

If there exists « € G of order 4, then (z) is cyclic, so G = C4. Now suppose
o(r)=2forallz #e, x €G. Sox?=eforall x €G.
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Let e, z,y be 3 distinct elements of G. If zy = e then y = 27! =z, a

contradiction; if zy = = then y = e, a contradiction; similarly xy # y. It
follows that

G ={ex,y,zy}.
As above, yx # e, z,y hence yxr = xy. So multiplication table of G is

e | |y |2y
el e Yy | 2y
z|lx |e |zy|y

ylly |azy|le |z
zy |lzy |y |z |e

This is the same as the table for Cy x Cs, so G = Cy x Cy. O

Groups of size 6

We know the following groups of size 6: Cg, Dg, S3. Recall Dg is the
symmetry group of the equilateral triangle and has elements

e, p, p*, 0, po, p°o.

satisfying the following equations:

3

=6
o2 =
op = plo.

The whole multiplication table of Dg can be worked out using these equa-

tions. e.g.

o - (po) = p’oo = p’.

Proposition 6.4 Up to isomorphism, the only groups of size 6 are Cg and
Dg.

Proof Let G be a group with |G| = 6. By Lagrange, every element of G
has order 1, 2, 3 or 6. If there exists z € G of order 6, then G = () is cyclic
and therefore G =2 Cg by 2.2. So assume G has no elements of order 6. Then
every © € G, (x # e) has order 2 or 3. If all have order 2 then z? = ¢ for all
x € G. So by Sheet 2 Q5, |G| is divisible by 4, a contradiction. We conclude
that there exists € G with o(z) = 3. Also by 6.2, there is an element y of
order 2.
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Let H = (z) = {e,z,2*}. Then y ¢ H so Hy # H and
G=HUHy= {e,x,xQ,y,xy,xzy}.
What is yz? Well,

-1

yr = e = Yy = I
yx z ) Yy € a contradiction.
yr = r° = Yy = T
yr = vy = T = e

If yx = zy, let’s consider the order of zy:

(zy)? = zyzy = zzyy (as yr = zy) = z°y? = z°.
Similarly
(zy)’ =2®y’ =y #e.
So zy does not have order 2 or 3, a contradiction. Hence yx # xy. We
conclude that yx = z2y.

At this point we know the following:

o G = {e,x,x2,y,xy,w2y},

o 3 =¢ 22 =¢, yz = z3y.
In exactly the same way as for Dg, can work out the whole multiplication
table for G using these equations. It will be the same as the table for Dg
(with x,y instead of p,0). So G = Dg. O

Remark Note that |S3| = 6, and S5 = Dg.
Summary

Proposition 6.5 Up to isomorphism, the groups of size < 7 are

Size  Groups

C1

Co

Cs

04, Cg X 02
Cs

Ce, Dg

Cr

N DY GrAs o~
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Remarks on larger sizes

Size 8: here are the groups we know:

Abelian Cg, C4 X CQ, Cg X CQ X Cg,

Non-abelian Dsg.

Any others? Yes, the quaternion group Qs:

Define matrices
i 0 01
a=(5 1) 2=( )

A*=1, B*=1 A’=DB% BA=A'B.

Check equations:

Define
Qs = {A"B°|rsel}
{A"B" | 0<m <3, 0<n<1}.

Sheet 3 Q5: |Qs| = 8. Qg is a subgroup of GL(2,C) and is not abelian and
Qs # Dg. Call Qg the quaternion group. Sheet 3 Q7: The only non-abelian
groups of size 8 are Dg and (Js. Yet more info:

Size  Groups
9 only abelian (Sh3 Q4)

11 Cnp
12 abelian, D15, A4 + one more
14 Ci4,D14

16 14 groups

7 Homomorphisms, normal subgroups and factor
groups

Homomorphisms are functions between groups which “preserve multiplica-
tion”.
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Definition Let G, H be groups. A function ¢ : G — H is a homomorphism
if p(zy) = ¢(x)d(y) for all z,y € G.

Note that an isomorphism is a homomorphism which is a bijection.

Examples
1. G, H any groups. Define ¢ : G — H by
¢(z) =egVr € G
Then ¢ is a homomorphism since ¢(xy) = eg = egen = ¢(x)d(y).

2. Recall the signature function sgn : S, — C3. By 4.1(a), sgn(xy) =
sgn(z)sgn(y), so sgn is a homomorphism.

3. Define ¢ : (R,+) — (C*, x) by
¢(z) = ¥z € R,

Then ¢(z + y) = >™@HY) = 2m2e2mY — (1) (y), so ¢ is a homo-
morphism.

4. Define ¢ : Dy, — C5 (writing Da, = {e,p, L pv Yo po, .. 7pn—la})
by
6(5"0") = (~1)".
(so ¢ sends rotations to +1 and reflections to —1). Then ¢ is a homo-
morphism since:

¢ ((07o*)(p'o™)) = o(p"*o*)
= (=17 =g(p"o%)p(p" ™).

Proposition 7.1 Let ¢ : G — H be a homomorphism
(a) dlec) = en
(b) ¢(z~1) = ¢p(x)~t for all x € G.
(c) o(¢(z)) divides o(x) for all x € G.

Proof (a) Note that ¢(eq) = ¢(egeq) = ¢(eg)d(eq). Multiply by ¢(eq) ™
to get ey = ¢(eq).
(b) By (a), en = ¢(ec) = d(zz™") = ¢(z)p(z 7). So ¢(z™) = ¢(=) "
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(c) Let r = o(x). Then

Hence o(¢(z)) divides r. O

Definition Let ¢ : G — H be homomorphism. The image of ¢ is
Im¢ = ¢(G) = {¢(x) [ x € G} C H.

Proposition 7.2 If¢: G — H is a homomorphism, then Im¢ is a subgroup
of H.

Proof

(1) ey € Img since ey = ¢(eq).

(2) Let g,h € Im¢. Then g = ¢(x) and h = ¢(y) for some z,y € G, so
gh = ¢(x)d(y) = ¢(zy) € Img.

(3) Let g € Im¢. Then g = ¢(x) for some x € G. So g~! = ¢(z)~! =
#(x~1) € Img.
Hence Im¢ is a subgroup of H. [

Examples

1. Is there a homomorphism ¢ : S3 — C37 Yes, ¢(z) =1 for all x € Ss.
For this homomorphism, Im¢ = {1}.

2. Is there a homomorphism ¢ : S3 — Cs such that Im¢ = C3?

To answer this, suppose ¢ : S3 — C3 is a homomorphism. Consider
#(12). By 7.1(c), ¢(1 2) has order dividing o(1 2) = 2. As ¢(1 2) € Cs,
this implies that ¢(1 2) = 1. Similarly ¢(1 3) = ¢(2 3) = 1. Hence
$(123)=9¢((13)(12) =¢(13)p(12)=1
and similarly ¢(1 3 2) = 1. We’ve shown that
o(x) = 1Vz € Ss.

So there is no surjective homomorphism ¢ : S5 — Cs.
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Kernels

Definition Let ¢ : G — H be a homomorphism. Then kernel of ¢ is
Ker¢g = {x € G| ¢(x) =en}.

Examples

1. If ¢ : G — H is ¢(x) = ey for all x € G, then Ker¢ = G.

2. For sgn: S, — Co,
Ker(sgn) = {x € S, | sgn(x) = 1} = A,,, the alternating group.
3. If ¢: (R, +) = (C*, x) is ¢(x) = €2™@ for all x € R, then
Kerg = {x e R | *™* =1} = Z.
4. Let ¢ : Dy, — C3 be given by ¢(p"0°) = (—1)°. Then Ker¢ = (p).

Proposition 7.3 If ¢ : G — H is a homomorphism, then Ker¢ is a sub-
group of G.

Proof
(1) eq € Ker¢g as ¢(eq) = ey by 7.1.

(2) @,y € Kerg then ¢(z) = ¢(y) = en, so ¢(zy) = ¢(x)¢(y) = emn; ie.
zy € Kerg.

(3) x € Kere then ¢(z) = ep, so ¢(x) ! = ¢p(x71) = ey, so x71 € Kerg.
U

In fact, Ker¢ is a very special type of subgroup of G known as a normal
subgroup.

Normal subgroups

Definition Let G be a group, and N C G. We say N is a normal subgroup
of G if

(1) N is a subgroup of G,
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(2) g7'Ng= N for all g € G, where g 'Ng = {g7'ng | n € N}.
If N is a normal subgroup of G, write N < G.
Examples

1. G any group. Subgroup (e) = {e} <G as g~'eg = e for all g € G. Also
subgroup G itself is normal, i.e. G <1G, as g~!Gg =G for all g € G.

Next lemma makes condition (2) a bit easier to check.

Lemma 7.4 Let N be a subgroup of G. Then N <G if and only if g ' Ng C
N for all g € G.

Proof
= Clear.
< Suppose g"'Ng C N for all g € G. Let g € G. Then
g 'NgCN.
Using g~ ! instead, we get (g7)"'Ng~! C N, hence
gNg ' CN.

Hence N C g~'Ng. Therefore g"'Ng = N. O

Examples (1) We show that A, <S,,. Need to show that
g 'Ang C ApVg € Sy

(this will show A,, < S, by 7.4).

For z € A,,, using 4.1 we have
sgn(g~'wg) = sgn(g~")sgn(z)sgn(g) =sgn(g~') - 1-sgn(g) = 1.
So g lzg € A, for all z € A,,. Hence
g_lAng CA,.

So A, < S,,.
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(2) Let G =53, N =((12)) ={e,(12)}. Is N aG? Well,
(13)71(12)(13)=(13)(12)(13)=(23)¢N.
So (13)"IN(13)# N and N 4S;.

(3) If G is abelian, then all subgroups N of G are normal since for g € G,
n e N,

9 'ng =g tgn =n,
and hence g"'Ng = N.

(4) Let Do, = {e,p, o pv Yo, po,. .. ,p”‘lo}. Fix an integer . Then

(p") < Dap.

1 n

Proof — sheet 4. (key: magic equation op = p~'0,...,0p -n

=p o).

Proposition 7.5 If ¢ : G — H is a homomorphism, then Ker¢ < G.

Proof Let K = Ker¢. By 7.3 K is a subgroup of G. Let g € G, x € K.
Then

$g~ " zg) = ¢lg )o(x)p(9) = ¢(9) 'end(g) = en.
So g lzg € Ker¢ = K. This shows ¢ ' Kg C K. So K < G. O

Examples

1. We know that sgn : S, — Cs is a homomorphism, with kernel A4,,. So
A, <S8, by 7.5.

2. Know ¢ : Da, — Co defined by ¢(p"0®°) = (—1)*® is a homomorphism
with kernel (p). So (p) <0 Day,.

3. Here’s a different homomorphism « : Dg — C5 where
a(p'o®) = (-1)".
This is a homomorphism, as

a((po")(plo™)) = a(poru)
(—1)%t = (~1)" - (1"
— a(p’o)alp'o").
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The kernel of « is
Kera = {p'c® | r even} = {e,pz,a, p20'} .

Hence
{67 P2> g, p20'} < D8-

Factor groups

Let G be a group, N a subgroup of G. Recall that there are exactly %

different right cosets Nz (z € G). Say

Nzi,Nzxsy,...,Nx,

where r = ﬁ Aim is to make this set of right cosets into a group in a
natural way. Here is a “natural” definition of multiplication of these cosets:

(Nz)(Ny) = N(zy). (33)
Does this definition make sense? To make sense, we need:

Nz = Ng'

Ny = Ny/ } = Nxy = Nz'y/

for all z,y,2',y’ € G. This property may or may not hold.

Example G = S3, N = ((1 2)) = {e, (1 2)}. The 3 right cosets of N in G
are
N = Ne,N(123),N(132).

Also N _ N1 2)
N(123) = N(12)(123)=N(23)
N(132) = N(12)(132)=N(13).

According to (33),
(N(123))(N(123)=N(123)(123)=N(132).
But (33) also says that
(N(23))(N(23)) =N(23)(23) = Ne.
So (33) makes no sense in this example.
How do we make (33) make sense? The condition is that N < G. Key is

to prove the following:
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Proposition 7.6 Let N <<G. Then for x1,x2,y1,y2 € G

N.’L'l :ng

= Nx = N2xoys.
Ny = Nys } 191 242

(Hence definition of multiplication of cosets in (33) makes sense when N <

G.)

To prove this we need a definition and a lemma: for H a subgroup of G
and x € G define the left coset

xH ={xh:h € H}.
Lemma 7.7 Suppose N <G. Then xH = Hzx for all x € G.

Proof Let he€ H. As H< G, xHxz ! = H, and so zha™! = h/ € H.
Then xzh = h'x € Hx. This shows that xtH C Hz. Similarly we see that
Hx CxH, hence tH = Hx. O

Proof of Prop 7.6
Let N < G. Suppose Nx1 = Nzy and Ny; = Nyo. Then

Nziy1 = Nzoy; as Nxyp = Naxo
=xz2Ny; by Prop 7.7
=x9Nys as Ny; = Nyo
= Nzoys by Prop 7.7.00

So we have established that when N <G, the definition of multiplication
of cosets

(Nz)(Ny) = Nay

for z,y € G makes sense.

Theorem 7.8 Let N < G. Define G/N to be the set of all right cosets Nx
(x € G). Define multiplication on G/N by

(N)(Ny) = Nay.

Then G/N is a group under this multiplication.

Proof
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Closure obvious.
Associativity Using associativity in G

(NzNy)Nz = (Nzy)Nz
N(zy)z
Nz(yz)
(N2)(Ny2)
= Nz(NyNz).

Identity is Ne = N, since NxNe = Nze = Nx and NeNz = Nex =
Nzx.

Inverse of Nz is Nz™!, as NxNz~! = Nza~! = Ne, the identity.
Definition The group G/N is called the factor group of G by N.

Note that

Gl
G/N| = .
G/N] IN|

Examples

1. A, <S,. Since ||iz|| = 2, the factor group S, /A, has 2 elements

Ay, Ap(1 2).

So S, /A, = Cy. Note: in the group S, /A, the identity is the coset
A,, and the non identity element A, (1 2) has order 2 as

(An(l 2))2 = An(l 2)An(1 2) = An(l 2)(1 2) = Ay.

2. G any group. We know that G < G. What is the factor group G/G?
Ans: G/G has 1 element, the identity coset G. So G/G = (4.

Also (e) = {e} < G. What is G/ (e)? Coset (e) g = {g}, and multipli-
cation
((e) 9) ({e) h) = {e) gh.
So G/ (e) = G (isomorphism g — (e) g).
3. G = Dy = {e,p,...,p5,a,ap,...,ap5} where pb = 02 = e, op =

p_la.
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(a) Know that (p) < Dja. Factor group Dia/ (p) has 2 elements

(p); (p) o so D12/ (p) = Ch.
(b) Know also that (p*) = {e,p? p*} < D12. So D12/ (p?) has 4
elements, so

Dlg/ <p2> = C4 or C2 X CQ.
Which? Well, let N = <p2>. The 4 elements of Di3/N are

N,Np,No, Npo.

We work out the order of each of these elements of Djs/N:

(Np)* = NpNp=Np’
= N’

(No)2> = NoNo = No?
= N7

(Npo)? = N(po)?
= N.

~

So all non-identity elements of D12/N have order 2, hence D12/ (p)
02 X 02.

(c) Also <p3> = {e, p3} <1 D1s. Factor group Dig <p3> has 6 elements
so is & (g or Dg. Which? Let M = <p3>. The 6 elements of
D12/M are

M,Mp,M,O2,MO',MpO‘,Mp20'.

Let x = Mp and y = Mo. Then

w3 = (Mp)* = MpMpMp = Mp®

yv? = (Mo)?= Mo?

yr = MoMp= Mop=Mplo=Mp ‘Mo
= m_ly.

So Dya/M = {identity,sc,x2,y,xy,:c2y} and 23 = y? = identity,yr =
CL‘_ly. So D12/ <p3> = Dg.

Here’s a result tying all these topics together:

Theorem 7.9 (First Isomorphism Theorem) Let ¢ : G — H be a ho-
momorphism. Then
G/Ker¢ = Ime.
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Proof Let K = Ker¢. So G/K is the group consisting of the cosets
Kz (x € G) with multiplication (Kxz)(Ky) = Kzy. We want to define a
“natural” function G/K — Im¢. Obvious choice is the function Kz — ¢(x)
for x € G. To show this is a function, need to prove:

Claim 1. If Kz = Ky, then ¢(x) = ¢(y).

To prove this, suppose Kz = Ky. Thenzy~! € K (asz € Kz = = = ky
for some k € K = zy ! =k € K ). Hence 2y~ € K = Kerg, so

By Claim 1, we can define a function o : G/K — Im¢ by
a(Kz) = ¢(z)

for all z € G.
Claim 2. « is an isomorphism.

Here is a proof of this claim.
(1) « is surjective: for if ¢(x) € Im¢ then ¢(z) = a(Kz).

(2) « is injective:

so zy~! € Ker¢ = K and so Kz = Ky.

(3) Finally
a((Kz)(Ky)) =

Hence « is an isomorphism.

This completes the proof that G/K = Im¢. O

Corollary 7.10 If ¢ : G — H is a homomorphism, then
G| = [Kerg| - [Imé.
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One can think of this as the group theoretic version of the rank-nullity
theorem.

Examples
1. Homomorphism sgn : S, = Cs. By 7.9
Sn/Ker(sgn) = Im(sgn),

SO
S/ An = Cs.

2. Homomorphism ¢ : (R, +) — (C*, x)

¢(.’IZ) — 627riw.
Here )
Kerp = {zeR|e™ =1}
Im¢ = {™|zeR}
= T the unit circle.
SoR/Z=T.

3. Is there a surjective homomorphism ¢ from S3 onto C's? Shown pre-
viously — No.

Here’s a better way to see this: suppose there exist such ¢. Then
Im¢ = Cs, so by 7.9, S3/Ker¢ = Cs. So Ker¢ is a normal subgroup
of S3 of size 2. But S3 has no normal subgroups of size 2 (they are

((12)), (1 3)), (2 3)))-

Given a homomorphism ¢ : G — H, we know Ker¢ <t G. Converse
question: Given a normal subgroup N <G, does there exist a homomorphism
with kernel N7 Answer is YES:

Proposition 7.11 Let G be a group and N < G. Define H = G/N. Let
¢ : G — H be defined by
6(x) = Na

for allx € G. Then ¢ is a homomorphism and Ker¢ = N.
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Proof First, ¢(zy) = Nzy = (Nz)(Ny) = ¢(z)¢p(y), so ¢ is a homomor-
phism. Also

z€Kerpg & ¢(x) =ep & Nx=N&xeN.

Hence Ker¢p = N. U

Example From a previous example, we know <p2> = { e, p?, p4} <1D15. We
showed that Dqa <p2> >~ (9 x Cy. So by 7.11, the function ¢(z) = <,02>£L‘
(x € Dq2) is a homomorphism Djs — Co x Cy which is surjective, with
kernel <p2>.

Summary
There is a correspondence

{normal subgroups of G} «++ {homomorphisms of G} .

For N <1 G there is a homomorphism ¢ : G — G/N with Ker¢ = N. For a
homomorphism ¢, Ker¢ is a normal subgroup of G.

Given G, to find all H such that there exist a surjective homomorphism
G— H:

(1) Find all normal subgroups of G.

(2) The possible H are the factor groups G/N for N < G.

Example: G = S5.
(1) Normal subgroups of G are
(e),G, A3 =((123))
(cyclic subgroups of size 2 ((i j)) are not normal).
(2) Factor groups:

S3/(e) =283, S3/S3=Cq, S3/A3=Cs
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8 Symmetry groups in 3 dimensions

These are defined similarly to symmetry groups in 2 dimensions, see chapter
2. An isometry of R? is a bijection f : R® — R3 such that d(z,y) =

d(f(z), f(y)) for all z,y € R3.

Examples of isometries are: rotation about an axis, reflection in a plane,
translation.

Asin 2.1, the set of all isometries of R?, under composition, forms a group
I(R3). For I C R?, the symmetry group of ILis G(II) = {g € I(R®) | g(II) = II}.
There exist many interesting symmetry groups in R®. Some of the most in-
teresting are the symmetry groups of the Platonic solids: tetrahedron, cube,
octahedron, icosahedron, dodecahedron.

Example: The reqular tetrahedron
Let II be regular tetrahedron in R3, and let G = G(II).

o Rotations in G: Let R be the set of rotations in G. Some elements of
R:

1) e,
(2) rotations of order 3 fixing one corner: these are
P1, p%a P2, P%» P3, pga P4, :0421

(where p; fixes corner i),

(3) rotations of order 2 about an axis joining the mid-points of op-
posite sides
P12,34, P13,24, P14,23-

So |R| > 12. Also |R| < 12: can rotate to get any face ¢ on bottom (4
choices). If i is on the bottom, only 3 possible configurations. Hence
|R| <4-3=12. Hence |R| = 12.

Claim 1: R = Ay.

To see this, observe that each rotation r € R gives a permutation of
the corners 1,2, 3,4, call it m,.:

e — 7 = identity permutation

piyp? — all 8 3-cyclesin Sy (123),(132),...
p12,34 — (1 2)(3 4)

piz2a — (13)(24)

pa2s — (14)(23).
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Notice that {m, | € R} consists of all the 12 even permutations in
Sy, i.e. A4. The map r — m, is an isomorphism R — A4. So R = Ay.

Claim 2: The symmetry group G is Sy.

Obviously G contains a reflection ¢ with corresponding permutation
e = (1 2). So G contains
R U Ro.

So |G| > |R| + |Ro| = 24. On the other hand, each g € G gives a
unique permutation m, € Sy, so |G| < [S4] = 24. So |G| = 24 and the
map g +— 7y is an isomorphism G' — Sj.

9 Counting using groups

Consider the following problem. Colour edges of an equilateral triangle with
2 colours R, B. How many distinguishable colourings are there?

Answer: There are 8 colourings altogether:

1) all the edges red — RRR,

2) all the edges blue — BBB,

(1)
(2)
(3) two reds and a blue - RRB,RBR,BRR,
(4)

two blues and a red - BBR,BRB,RBB.

Clearly there are 4 distinguishable colourings. Point: Two colourings are
not distinguishable iff there exists a symmetry of the triangle sending one
to the other.

To bring groups into the picture: call C' the set of all 8 colorings. So
C ={RRR,...,RBB}.

Let G be the symmetry group of the equilateral triangle, Dg = {e, p, p2, 0, po, pzo}.
Each element of Dg gives a permutation of C, e.g. p gives the permutation
(RRR) (BBB)(RRB RBR BRR) (BBR BRB RBB).

Divide the set C into subsets called orbits of G: two colourings ¢, d are
in the same orbit if there exists g € Dg sending ¢ to d. The orbits are the
sets (1) - (4) above. The number of distinguishable colourings is equal to
the number of orbits of G.

36



General situation

Suppose we have a set S and a group G consisting of some permutations
of S (e.g. S =C, G = Dg above). Partition S into orbits of G, by saying
that two elements s,t € S are in the same orbit iff there exists a g € G such
that g(s) = t. How many orbits are there?

Lemma 9.1 (Burnside’s Counting Lemma) For g € G, define

fix(g) = number of elements of S fized by g
= [seSlgls)=sil.

Then

1
number of orbits of G = @ Z fix(g).
geG

I won’t give a proof. Look it up in the recommended book by Fraleigh
if you are interested.

Examples

(1) C = set of 8 colourings of the equilateral triangle. G = Dg. Here are
the values of fix(g):

2

gllelp|p|a]po]p
fix(g) [8[2] 2[4 4] 4 |

By 9.1, number of orbits is $(8 +2+2+4+4+4) =4.

(2) 6 beads coloured R, R, W, W, Y, Y are strung on a necklace. How
many distinguishable necklaces are there?

Each necklace is a colouring of a regular hexagon. Two colourings are
indistinguishable if there is a rotation or reflection sending one to the
other (a reflection is achieved by turning the hexagon upside down).
Let D be the set of colourings of the hexagon and G = Djs.

g e [plp?|P]pt]F]
fix(g) [ () x ) [o[o]6[0]0]
A AV AV AV VAV




So by 9.1
1
number of orbits = E(QO +42) =11.

So the number of distinguishable necklaces is 11.

Make a tetrahedral die by putting 1, 2, 3, 4 on the faces. How many
distinguishable dice are there?

Each die is a colouring (colours 1, 2, 3, 4) of a regular tetrahedron. Two
such colourings are indistinguishable if there exists a rotation of the
tetrahedron sending one to the other. Let E be the set of colourings,
and G = rotation group of tetrahedron (so |G| = 12, G = A4 by
Chapter 8). Here for g € G

[ 24 ifg=e,
ﬁx(g)_{ 0 ifg+#e.

So by 9.1, number of orbits is 75(24) = 2. So there are 2 distinguishable
tetrahedral dice.
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Part(B): Linear Algebra

Revision from M1GLA:

Matrices, linear equations; Row operations; echelon form; Gaussian elimina-
tion; Finding inverses; 2 X 2, 3 x3 determinants; eigenvalues and eigenvectors;
diagonalization.

From M1P2:

Vector spaces; subspaces; spanning sets; linear independence; basis, di-
mension; rank, col-rank = row-rank; linear transformations; kernel, image,
rank-nullity theorem; matrix [T]p of a linear transformation with respect to
a basis B; diagonalization, change of basis .

10 Determinants

In M1GLA, we defined determinants of 2 x 2 and 3 x 3 matrices. Recall the
definition of 3 x 3 determinant:

a1l a2 ais
21 G2 A23 | = G11022G23—G11023032—012021033+012023031 1013021032 —0A13022031 -
az1 asz as3

This expression has 6 terms. Each term
(1) is a product of 3 entries, one from each column,

(2) has a sign =+.

Property (1) gives for each term a permutation of {1,2,3}, sending i — j if
a;i; is present.

Term Permutation Sign
aiiazzaz3 € +
ajiazzaze (2 3) -
arpagiazz (1 2) -
ajzazsazr (12 3) +
aizaziazz (13 2) +
ajzazaz; (1 3) -

Notice:

e the sign is sgn(permutation),
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e all 6 permutations in S3 are present.

So

|A| = Z sgn() " A1,7w(1)02,7(2)33,7(3)"
mES3

Here’s a general definition:
Definition Let A = (a;j) be n x n. Then the determinant of A is

det(A) = |A| = Z Sgn(ﬂ-) *A1,7(1)22,7(2) " Anyw(n)-
TESR

Example
For n =1, A = (a11) and S1 = {e}, so det(A4) = a1;.

For n = 2, A= ( @ a2 ), SQ = {6,(1 2)} So |A| = 11022 — A12021.
a1  G22

The new definition agrees with M1GLA.
Aim: to prove basic properties of determinants. These are:

(1) to see the effects of row operations on the determinant,

(2) to prove multiplicative property of the determinant:
det(AB) = det(A)det(B).
Basic properties
Let A = (a;j) be n x n. Recall the transpose of A is AT = (a;;).
Proposition 10.1 |AT| = |A|.
Proof Let AT = (bij), so bij = aj;. Then

AT = Y s, sen(m)byz(1) - br(n)
= Zwesn Sgn(ﬂ-)aw(l),l *Qr(n)n-

Let 0 = 7~ L. Then

Ar(1),1 """ Ax(n),;n = Al,0(1) """ An,o(n)-



Also observe sgn(m) = sgn(o) by 4.1. So

‘AT’ - Z sgn(a) “A1,0(1) " Cno(n):
71'6571.

As 7 runs through all permutations in S, so does 0 = 7. Hence |AT| =
|Al. O

So any result about determinants concerning rows will have an analogous
result concerning columns.

Proposition 10.2 Suppose B is obtained from A by swapping two rows (or
two columns). Then |B| = —|A|.

Proof We prove this for columns (follows for rows using 10.1). Say
columns numbered r and s are swapped. Let 7 = (r s), 2-cycle in S,,. Then
if B = (bz‘j)7 bij = ai,T(j). SO

|B| = Zﬂesn Sgn(ﬂ)bl,ﬂ'(l) T bn,w(n)
= Zﬂesn Sgn(ﬂ-)al,ﬂr(lb © o Qpor(n)-
Now sgn(7m) = sgn(7)sgn(m) = —sgn(w) by 4.1. So
|B| = Z _Sgn(Tﬂ-) *A1,rr(1)s " Onyre(n) -
7T€Sn

As 7 runs through all elements of S,, so does 7m. So |B| = —|A|. O

Proposition 10.3 (1) If A has a row (or column) of 0’s then |A| = 0.
(2) If A has two identical rows (or columns) then |A| = 0.
(3) If A is triangular (upper or lower) then |A| = a11a22 - - Gnp -

Proof (1) Each term in |A| has an entry from every row, so is 0.

(2) If we swap the identical rows, we get A again, so by 10.2 |A| = —|A].
Hence |A] = 0.

(3) The only nonzero term in |A] is a11a22 - - Gpp. O

For example, by (3), |I| = 1.

We can now find the effect of doing row operations on |A]|.
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Theorem 10.4 Suppose B is obtained from A by using an elementary row
operation.

(1) If two rows are swapped to get B, then |B| = —|A|.

(2) If a row of A is multiplied by a nonzero scalar k to get B, then
|B| = E[A].

(8) If a scalar multiple of one row of A is added to another row to get
B, then |B| = |A].

(4) If |A| = 0, then |B| =0 and if |A| # 0 then |B| # 0.

Proof (1) is 10.2.

(2) Every term in |A| has exactly one entry from the row in question, so
is multiplied by k. Hence |B| = k|A|.
(3) Suppose ¢ x row k is added to row j. So

ai o Gln
Bl =
1Bl aj; + Cagy - Qjn + Cagp
ail v Qlp
aip -+ Qln
= ' +elap o0 agn
a’j’i ajn
a1 -+ Qkn
= |A|+0

by 10.3(2). Hence |B| = |A].
(4) is clear from (1), (2), (3). O

Expansions of determinants
As in M1GLA, recall that if A = (a;;) is n X n, the ij-minor A;; is the
(n — 1) x (n — 1) matrix obtained by deleting row ¢ and column j from A.

Proposition 10.5 (Laplace expansion by rows) Let A be n x n.

1) Ezpansion by 1% row:
(1) Exp y

Al = a11|A11| — a1z Ara| + ars|Ais| — -+ + (=1)" ain|Amn|.
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(2) Ezpansion by it" row:
(1) MA| = an|di| — a2 Aio| + aig|Ass| — -+ (=1)"  ain| Ainl-
Note that using 10.1 we can get similar expansions by columns.

Proof (1) For the first row: Consider

‘A| - Z (Sgnﬂ')al,w(l) ©Qpor(n)-
TI'GSn

Terms with a1 are

Z Sgn(n)alla2,w(2) ©rQpor(n) = ar|Al-
TESy,m(1)=1

To calculate terms with a5, swap columns 1 and 2 of A to get

a12 a1 aiy
a2 G21 ag3

an2 QAanpl Qanp3

Then |B| = —|A| by 10.2. Terms in |B| with a2 add to aj2|A12. So terms
in |A| with a2 add to —aj2|A;2|. For terms with aj3, swap columns 2 and
3 of A, then swap columns 1 and 2 to get

a1z aix a2
a3 a21 a2

B =

an3 Aanl Qn2

Then |B’| = |A] and a;3 terms add to ai3|Ais|-

Continuing like this, see that |A| = a11]|A11| — a12]A12 + - -+ which is
expansion by the first row.

(2) For expansion by " row, do i — 1 row swaps in A to get

aip - Qin

air -+ Qin
Bl/

21 ccc Q2p
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Then |B”| = (—1)*"1|A]. Now use expansion of B” by 1% row. [J

Major properties of determinants

Two major results. First was proved in M1GLA for 2 x 2 and 3 x 3 cases:

Theorem 10.6 Let A be n x n. The following statements are equivalent.
(1) |Al #0.
(2) A is invertible.
(8) The system Az =0 (x € R™) has only solution x = 0.

(4) A can be reduced to I, by elementary row operations.

Proof We proved (2) < (3) & (4) in M1GLA (7.5).
(1) = (4): Suppose |A| # 0. Reduce A to echelon form A’ by elementary
row operations. Then |A’| # 0 by 10.4(4). So A’ does not have a zero
row. Therefore A’ is upper triangular with 1’s on diagonal and hence can
be reduced further to I, by row operations.

(4) = (1): Suppose A can be reduced to I,, by row operations. We know
that |I,,| = 1. So |A| # 0 by 10.4(4). O

Corollary 10.7 Let A be nxn. If the system Ax = 0 has a nonzero solution
x # 0 then |A] = 0.

Second major result on determinants:

Theorem 10.8 If A, B are n x n then

det(AB) = det(A)det(B).
To prove this need to study

Elementary matrices
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These are n x n of the following types:

1
1
Ai(r) = r r#0,
1
1
1
1
Bij = I,, with rows 4, j swapped,
1
1
1
1 T
Cij(r) = . r is the ij-th entry, i # j.
1
1

The elementary matrices correspond to elementary row operations:

Proposition 10.9 Let A be n x n. An elementary row operation on A
changes it to EA, where E is an elementary matriz.

Proof Let the rows of A be vy,...,v,.

(1) Row operation v; — rv; sends A to A;(r)A.

(2) Row operation v; <+ v; sends A to B;; A.

(3) Row operation v; — v; + rv; sends A to Cyj(r)A. O
Proposition 10.10 (1) The determinant of an elementary matriz is nonzero
and

|Ai(r)| =7, |Bi| = =1, |Ci(r)] = 1.
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(2) The inverse of an elementary matriz is also an elementary matriz:
AZ'(T)_I = Ai(T_l), Blgl = Bij7 Cij(T)_l = CZ(—T)

Proposition 10.11 Let A be n X n, and suppose A is invertible. Then A
s equal to a product of elementary matrices, i.e. A = Ey --- E, where each
FE; is an elementary matrix.

Proof By 10.6, A can be reduced to I by elementary row operations.
By 10.9 first row operations changes A to F1A with E; elementary matrix.
Second changes F1 A to EoE1 A, Ey elementary matrix ...and so on, until
we end up with 7. Hence

I =EyEy_1---E1A,

where each Fj; is elementary. Multiply both sides on left by E; ... Ek:llEk_ !
to get
EY BT = A

Each E; ! is elementary by 10.10(2). O

Towards Theorem 10.8:

Proposition 10.12 If E is an elementary n X n matriz, and A is n X n,
then det(EA) = det(E)det(A).

Proof Let the rows of A be vy,...,v,.

(1) If E = A;(r), then EA has rows v1,...,T0;,... U, so |[EA| = r|A| by
10.4 and therefore |[EA| = |E||A]| by 10.10.

(2) If E = B;j, then EA is obtained by swapping rows ¢ and j of A, so
|[EA| = —|A| by 10.4 and so |EFA| = |E||A| by 10.10.

(3) If E = Cjj(r) then EA has rows vq,...,v; + 10j,...Up, so |[EA| =
|E[|A| by 10.4 and 10.10. O

Corollary 10.13 If A = E; ... Ey, where each E; is elementary, then |A| =

|Ev|- - | Exl.
Proof
A = [E1-- By
= |E1||Es - - - Ey| by 10.12
= |Er||Ea|- - | Bkl
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Proof of Theorem 10.8

(1) If |A| =0 or |B| =0, then |AB| = 0 by Sheet 6, Q7.

(2) Now assume that |A| # 0 and |B| # 0. Then A, B are invertible by
10.6. So by 10.11,

A=E,---Ej, B=F,---F
where all E;, F; are elementary matrices. By 10.13,
|Al = |Ex[---|Ek|, [B|=|F1]|---|Fkl|.
Also AB = FEy--- EiFy--- F}, so by 10.13
[AB| = |Ex- -+ [En||F1] - - - [Fi| = |A[[B].

Immediate consequence:

Proposition 10.14 Let P be an invertible n X n matriz.

(1) det(P~1) = ﬁp),

(2) det(P~1AP) = det(A

for all n x n matrices A.

—_ O~

(
Proof (1) det(P)det(P~!) = detPP~! = detI =1 by 10.8.
(2) det(P~1AP) = det(P~!)detAdetP = detA by 10.8 and (1). O
11 Matrices and linear transformations

Recall from M1P2:

Let V be a finite dimensional vector space and T': V' — V a linear transfor-

mation. If B = {vy,...,v,} is a basis of V, write
T(Ul) = a11V1 + ...+ Anivn,
T(vn,) = aipvr+ ...+ Gppop.

The matriz of T with respect to B is

ail o Alp
[T)p =

anl - Qnn

A result from M1P2:
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Proposition 11.1 LetS:V =V andT : V — V be linear transformations
and let B be a basis of V.. Then

[ST]|p = [S]5[T]B,

where ST is the composition of S and T'.

Consequences of 11.1:

As in 11.1, let V' be n-dimensional over F' = R or C, basis B. The map
T — [T)p gives a correspondence

{linear transformations V' — V'} <> {n x n matrices over F'}.

This has many nice properties:
1. If [T]p = A then [T?]p = A? and similarly [Tk]B = Ak,
For a polynomial ¢(z) = a,2” + - -+ + a1x + ap (a; € C), define
Q(A) = arAr +---+ alA + CL()I

and
qT)=aT"+ -+ a1 T + aply

where 1y : V' — V is the identity map. Then 11.1 implies that

[9(T)]B = a(A).

Example Let V = polynomials of degree < 2, T'(p(xz)) = p/(x). Then
(T? = T)(p(x)) = p"(x) — p'(x) and

010 010 0 -1 2
T>-Tjg=({00 2] -l002|=(0 0 -2
00 0 000 0 0 0

2. Define GL(V) to be the set of all invertible linear transformations
V' — V. Then GL(V) is a group under composition, and 7' — [T]p is an
isomorphism from GL(V) to GL(n, F)) (recall that GL(n, F') is the group of
all n x n invertible matrices under matrix multiplication).

Change of basis
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Let V be n-dimensional, with bases E = {e1,...,en}, F ={f1,..., fn}
Write
fi = puer+--+puen,

fn = pin€l+ -+ Pnnén-

and define P to be the n x n matrix (p;;). Recall from M1P2 that P is the
change of basis matriz from E to F'. Here’s another basic result from M1P2:

Proposition 11.2 (1) P is invertible.
(2) If T : V — V is a linear transformation, then [T|p = P71[T|gP.

Determinant of a linear transformation

Definition Let A, B be n x n matrices. We say A is similar to B if there
exists an invertible n x n matrix P such that B = P~1AP.

Note that the relation ~ defined by
A~ B < A is similar to B

is an equivalence relation (Sheet 7, Q6).

Proposition 11.3 (1) If A, B are similar then |A| = |B|.
(2) Let T : V. — V be linear transformations and let E, F be two bases
of V. Then the matrices [T|g and [T)F are similar.

Proof (1) is 10.14, and (2) is 12.2(2). O

Definition Let T : V — V be a linear transformation. By 11.3, for any
two bases E, F' of V, the matrices [T]g and [T]r have same determinant.
Call det[T'|g the determinant of T', written detT'.

Example Let V = polynomials of degree < 2 and T'(p(z)) = p(2z + 1).
Take B = {1,x,m2}, SO

[T)p =

SO =
O N =
N N

So detT = 8.
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12 Characteristic polynomials

Recall from M1P2: let T : V' — V be a linear transformation. We say v € V
is an eigenvector of T if

(1) v # 0, and
(2) T(v) = Av where A is a scalar.

The scalar A is an eigenvalue of T

Definition The characteristic polynomial of T : V — V is the polynomial
det(xI —T), where I : V — V is the identity linear transformation.

By the definition of determinant, this polynomial is equal to det(zl —
[T]p) for any basis B.

Example V = polynomials of degree < 2, T'(p(z)) = p(1 — z), B =
{1, x, 332}. The characteristic polynomial of T is

11 r—1 -1 -1
det (2 —| 0 —1 -2 = det 0 z+1 2 | = (@—1)2(z+1).
0 0 1 0 0 z—1
From M1P2:

Proposition 12.1 (1) The eigenvalues of T are the roots of the character-
istic polynomial of T .

(2) If X is an eigenvalue of T, the eigenvectors corresponding to \ are
the nonzero vectors in

Eyx={veV | -T)(v) =0} =ker(\ - T).

(8) The matriz [T|p is a diagonal matriz iff B consists of eigenvectors

of T.

Note that E) = ker(AI —T') is a subspace of V', called the \-eigenspace
of T.

Example In previous example, eigenvalues of T" are 1, —1. Eigenspace F;
is ker(I — T'). Solve

o O O
SN =
SN =
o O O
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a

Solutions are vectors b |. So By = {a+bx—bz?|a,be F}.
—b
Eigenspace E_1. Solve
2 -1 -1]|0
0 0 2|0
0 0 =20
c
Solutions are vectors | —2¢ |. So E_; ={c—2czx | c€ F}.
0

Basis of Ej is 1,z — 2. Basis of E_; is 1 — 2x. Putting these together,
get basis
B = {l,a:—:rz,l —2:E}

of V' consisting of eigenvectors of T', and

10 0
Tls=|0 1 o0
00 —1

Proposition 12.2 Let V a finite-dimensional vector space over C. Let T :
V =V be a linear transformation. Then T has an eigenvalue A € C.

Proof The characteristic polynomial of T has a root A € C by the
Fundamental theorem of Algebra. [

Note that Proposition 12.2 is not necessarily true for vector spaces over
R. For example T : R? — R? defined by T(x1,z2) = (22, —x1) has charac-
teristic polynomial 22 + 1, which has no real roots.

Diagonalisation

Basic question is: How to tell if there exists a basis B such that [T]p is
diagonal? Useful result:

Proposition 12.3 Let T : V — V be a linear transformation. Suppose

V1, ..., U are eigenvectors of T' corresponding to distinct eigenvalues A1, ..., Ak.
Then vy, ...,vE are linearly independent.
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Proof By induction on k. Let P(k) be the statement of the proposition.
P(1) is true, since v; # 0, so v; is linearly independent. Assume P(k — 1)
is true, so vi,...,vi_1 are linearly independent. We show vi,...,v; are
linearly independent. Suppose

riv1 + -+ v = 0. (34)

Apply T to get
A1rivy 4+ -+ Ao =0 (35)

Then (35)-A;x(34) gives
r1(A1 — Ag)vr + -+ rp—1(Ag—1 — Ag)vg—1 = 0.
As vy,...,vg_1 are linearly independent, all coefficients are 0. So
(A1 =) = ... =1rp_1(Ap—1 — X)) = 0.
As the \; are distinct, Ay — Ag, ..., Ak_1 — A\ # 0. Hence
rm=...=7_1=0.

Then (34) gives rvr = 0, so 7, = 0. Hence vy, ..., vy are linearly indepen-
dent, completing the proof by induction. [J

Corollary 12.4 LetdimV =n and T : V — V be a linear transformation.
Suppose the characteristic polynomial of T' has n distinct roots. Then V has
a basis B consisting of eigenvectors of T (i.e [T|p is diagonal).

Proof Let A1,..., A\, be the (distinct) roots, so these are the eigenvalues

of T. Let vy,...,v, be corresponding eigenvectors. By 12.3, v1,...,v, are
linearly independent, hence form a basis of V' since dimV =n. O

Example Let

A1
0 X
A=
0 -~ 0 M\,
be triangular, with diagonal entries A1,..., Ay, all distinct. The character-

istic polynomial of A is

n

|zl — A| = H(:v - i)

=1
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which has roots A1, ..., \,. Hence by 12.4, A can be diagonalized, i.e. there
exists P such that P~1AP is diagonal.

Note that this is not necessarily true if the diagonal entries are not

distinct, e.g. ( (1) 1 ) cannot be diagonalized.

Algebraic and geometric multiplicities

Let T : V — V be a linear transformation with characteristic polynomial
p(z) = det(zI — T). Let A be an eigenvalue of T, i.e. a root of p(z). Write

p(z) = (z = )" Vq(w),
where ) is not a root of g(x). Call a(\) the algebraic multiplicity of .
The geometric multiplicity of A is defined to be

g(A) = dim Ej,
where E\ = ker(AI — T'), the A-eigenspace of T.

We adopt similar definitions for n x n matrices.

11
0 2

a(1) = g(1) = 1, a(2) = g(2) = L.

Example For A = < ), we have

And for B = ( ), we have

11

01
a(l) =2,¢(1) = 1.

Proposition 12.5 If A is an eigenvalue of T : V. — V', then g(A\) < a(A).

Proof Let r = g(\) = dim E) and let vq,...,v, be a basis of F). Extend
to a basis of V:

B={vy,...,vp,w1,...,Ws}.
We work out [T]p:
T(’Ul) = )\’Ul,
T(v,) = Auvp,
T(wi) = anvi+--+anvr +briws + -+ + bsrws,
T(ws) = a15v1 + -+ s + brswy + - + bgsws.
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So

A0 - 0lay --- a
A 0
B 0 0 - Aloayg - aps
[Ts = 0 -~ -~ 0]|by - bus
0 - - 0| by --- bss

Clearly the characteristic polynomial of this is

p(z) =det( (x_A)IS o __g ) .

By Sheet 7 Q5, this is
p(z) = det((z — N\)I,) det(zl; — B) = (x — A)"gq(x).

Hence the algebraic multiplicity a(\) > r = g(A). O
Here is a basic criterion for diagonalisation:

Theorem 12.6 Let dimV =n, T : V — V be a linear transformation, let

A1, .-, A e the distinct eigenvalues of T', and the characteristic polynomial
of T be

T

pla) = [J(@ = 2>

i=1
(so > iy a(X;) =n). The following statements are equivalent:
(1) V has a basis B consiting of eigenvectors of T' (i.e. [T|p is diagonal).
(2) 2oie19(X) = >2iy dim Ey, = n.
(8) g(\i) = a(N;) for alli.

Proof To prove(1) = (2),(3): Suppose (1) holds. Each vector in B is in
some FE),, so
T
Y dimEy, > |B| =n.
i=1
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By 12.5

s T T

Y dimEy, = g(h) <Y a(h) =n.

i=1 i=1 i=1
Hence Y ;_, dim Ey, = n and g(\;) = a()\;) for all 4.

Evidently (2) < (3), so it is enough to show that (2) = (1). Suppose

Y iy dim Ey, = n. Let B; be a basis of E), and let B =J;_, B;,so |[B| =n
(the B;’s are disjoint as they consist of eigenvectors for different eigenvalues).
We claim B is a basis of V, hence (1) holds:
It’s enough to show that B is linearly independent (since |B| =n = dim V).
Suppose there is a linear relation

Zavv—l—---—i— Zazz:O.

vEB] zE€B,
Write
V1 = ZvGBl Qy,
Uy = ZZEBT a:z,

sov; € Ey, and vi +--- 4+ v, = 0. As Aq,..., ]\, are distinct, the set of
nonzero v;’s is linearly independent by 12.3. Hence v; = 0 for all i. So

UZ-:Zavv:().

vEB;

As B is linearly independent (basis of E),) this forces o, = 0 for all v € B;.
This completes the proof that B is linearly independent, hence a basis of V.
O

Using 12.6 we get an algorithm to check whether a given n x n matrix
or linear transformation is diagonalizable:

1. Find the characteristic polynomial, factorise it as
[T =)

2. Calculate each g(\;) = dim Ej,.

3. If g(A;) = a(N;) for all 4, YES.
If g(\i) < a(N;) for some i, NO.
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-3 1 -1

Example Let A= | —7 5 —1 |. Check that
-6 6 -2

(1) Characteristic polynomial is (x + 2)%(z — 4).

1 (as it is < a(4)).

(2) For eigenvalue 4: a(4) =1,9(4) =
g(=2) = dimE_5 = 1.

(4
For eigenvalue —2: a(—2) = 2,

So A is not diagonalizable by 12.6.

13 The Cayley-Hamilton theorem

Recall that if T : V — V is a linear transformation and p(z) = agz® +--- +
a1z + ag is a polynomial, then p(T") : V' — V is defined by

p(T) = aka + ak_lTk 4+ -+ a1 T + aply.
Likewise if A is n x n matrix,

p(A) = apA¥ 4+ - a1 A + aol.

Theorem 13.1 (Cayley-Hamilton Theorem) LetV be finite-dimensional
vector space, and T : V. — V a linear transformation with characteristic
polynomial p(x). Then p(T) = 0, the zero linear transformation.

Proof later.

Corollary 13.2 If A is a n X n matriz with characteristic polynomial p(x),
then p(A) = 0.

This can easily be deduced from Theorem 13.1: simply apply 13.1 to the
linear transformation 7" : F™ — F™ (F =R or C) given by T'(v) = Av.

Examples 1. 13.2 is obvious for diagonal matrices

A1
A=
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This is because the A; are the roots of p(z), so
p(M)
p(4) = = 0.
p(An)

Corollary 13.2 is also quite easy to prove for diagonalisable matrices (Sheet

8 Q3).

2. For 2 x 2 matrices A = ( CCL 2 ), the characteristic polynomial is
(x) = r-oa b =22 — (a+d)z + ad — be
PEI= ¢ z-d|” '

So 13.2 tells us that
A% — (a+d)A+ (ad — be)I = 0.

Could verify this directly. For 3 x 3, ..., n X n need a better idea.

Proof of Cayley-Hamilton

Let T : V — V be a linear transformation with characteristic polynomial
p(z).

Aim: for v € V, show that p(T")(v) = 0.

Strategy: Study the subspace

vl = Span(v,AT(v),T2(v),...)
= Span(T*(v) | @

Definition A subspace W of V' is T-invariant if T(W) C W, i.e. T(w) € W
for all w € W.
Proposition 13.3 Pickv €V and let
W =T = Span(T'(v) | i > 0).
Then W is T-invariant.
Proof Let w € W, and write

w=a;T*(v) + -+ a, T (v).
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Then ‘ .
T(w) = alT“+1(v) 4o+ aTT“"H(v),

so T(w) e W. O
Example V = polynomials of deg < 2, T'(p(x)) = p(x 4+ 1). Then

zI' = Span(z,T(x),T*(z),...)
= Span(z,z + 1) = subspace of polynomials of deg < 1.

Clearly this is T-invariant.

Definition Let W be a T-invariant subspace of V. Define Ty : W — W
by
Tw(w) = T'(w)

for all w € W. Then Ty is a linear transformation, the restriction of T to
w.

Proposition 13.4 If W is a T-invariant subspace of V, then the charac-
teristic polynomial of Ty divides the characteristic polynomial of T'.

Proof Let
By = {w1,...,wi}

be a basis of W and extend it to a basis
B ={w,...,wg,x1,...,2}

of V. As W is T-invariant,

T(wi) = apwi+--+ aprwg,
T(wk) = a1pwW1 + -+ QppWkg.
Then
ai;p - alg
[TW]BW = =A
ak1 - Okk
and

n - (4)
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The characteristic polynomial of Ty is pw (z) = det(xI — A), and charac-
teristic polynomial of T is

ol — A —-X
p(z) = det( kO xIl—Y)
= det(zly — A) -det(zl; - Y)
= pw(z)-q().

So pw (z) divides p(z). O

Example V = polynomials of deg < 2, T(p(z)) = p(z + 1), W = 2T =
Span (x,z + 1). Take basis By = {1,z}, B = {1,:L',x2}. Then

Moy = (5 1)

e

sy

I
oo = O
O = = =
=N =

Characteristic polynomial of Ty is (z — 1)?, characteristic polynomial of T'
is (z —1)3.

Proposition 13.5 Let T : V — V be a linear transformation. Let v € V,
v #0, and '
W = vT = Span (T"(v) |i>0).
Let k =dimW. Then
{0.7(0), T2w), ... T" ()}
is a basis of W.
Proof We show that {v,T(v),...,Tk_l(v)} is linearly independent,

hence a basis of W. Let j be the largest integer such that the set {v, T'(v),..., T *(v)}
is linearly independent. So 1 < j < k. Aim to show that j = k. Let

S ={v,T(v),... ,Tj_l(v)}

and
X = Span(S).

Then X C W and dim X = j. By the choice of j, the set

{U,T(U), . ,Tj_l(v),Tj(v)}
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is linearly dependent. This implies that 77 (v) € Span(S) = X. Say
Tj(U) = bov + blT(v) 4+ 4 bj—lTj_l(U).

So
TI 1 (v) = boT(v) + by T?(v) + -+ + b1 T (v) € X.

Similarly T79+2(v) € X, T7"3(v) € X and so on. Hence T%(v) € X for all
¢ > 0. This implies

W = Span(T%(v) | i > 0) C X.

As X C W this means X = W, s0 j = dimX = dimW = k. Hence
{v, T(v),... ,kal(v)} is linearly independent, as required. [J

Proposition 13.6 LetT :V — V, letv € V and W = vT = Span (T%(v) | i > 0),
with basis By = {v,T(v),...,T* Y (v)} as in 15.5. Then

(1) there exist scalars a; such that
agv + a1T(v) + -+ + a1 T 1 (v) + T*(v) = 0,
(2) the characteristic polynomial of Ty is

pw(z) = 2 +ap_ 12"+ +ayz + ag,
(3)] pw (T)(v) = 0.

Proof
(1) is clear, since T*(v) € W and Byy is a basis of W.
(2) Clearly

0 o0 - 0 —ag
1 0 0 —ai
[TW]BW - 0 1 0 —ao
00 -+ 1 —ap_
(for the last column T(T*~1(v)) = T*(v) = —agv—a1T(v)—- - -—ap_1T*(v)).

By Sheet 8 Q4, the characteristic polynomial of this matrix is

pw(z) = 2% +ap_12* 1+ +ao.
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(3) This is clear from (1) and (2). O

Completion of the proof of Cayley-Hamilton 13.1

We have T : V — V with characteristic polynomial p(x). Let v € V|, let
W = o7 with basis {v,T(v),..., T 1(v)}. Let pw(z) = 2* + ap_12" 1 +
-+ 4 ag to be the characteristic polynomial of Ty,. By 13.6(3),

pw(T)(v) =
By 13.4, pw(x) divides p(z), say p(x) = q(z)pw (x), so p(T) = q(T)pw (T).

Then
p(T)(v) = (a(T)pw(T))(v)
a(T) (pw (T )(v))
= q(1)(0) =
Thus p(T")(v) = 0 for all v € V, which means that p(T") = 0. This completes
the proof.

14 Invariants of matrices

Recall that two n x n matrices A, B are similar if there is an invertible
matrix P such that B = P~'AP. Similar matrices share many common
properties:

Proposition 14.1 If A, B are similar n X n matrices, they have
(i) the same characteristic polynomial
(ii) the same eigenvalues and algebraic multiplicities
(iii) the same geometric multiplicities
(iv) the same determinant
(v) the same rank and nullity

(vi) the same trace, where trace(A) = ) ai;, the sum of the diagonal
entries.

Proof (i) is Sheet 8 Q2, and (ii) follows from (i).

(iii) Let V. = F™ (where ' = R or C), and define T': V. — V by
T(v) = Av. Choose bases E and F of V such that [T]g = A and [T]p = B
(i.e. take E to be the standard basis, and F' the basis with P as its change
of basis matrix from E). Then for any evalue A, the dimension of the A-
eigenspace of A or B is equal to dimker(7 — AI). Hence (iii).
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(iv) is 10.14.

(v) The nullity of A is the dimension of the 0-eigenspace, so (v) follows
from (iii).

(vi) The char poly of A is

det(xl — A) = 2™ —mn_l(all +odapn) e

so the coefficient of 271 is —trace(A). Hence trace(A) = trace(B) by (i) O

We summarise 14.1 by saying that the char poly, eigenvalues, geometric
mults, trace. etc. of a matrix A are quantities which are invariant under
similarity.

Note however that there properties do not determine A: there are many
pairs of non-similar matrices which have the same char poly, determinant,
trace, etc. Here’s an example:

Example Let

11 0 0 1 1 00
0 1.1 0 0100
A= 0 010 » B= 0 011
0 0 01 0 0 0 1

Then A, B have the same char poly (z — 1)%, the same geom mult g(1) = 2,
the same determinant 1, the same rank 4, the same trace 4. Yet A and B
are not similar (see the next section to justify this).

Aim: to find invariants of a matrix A which are sufficient to determine
A up to similarity. Will do this in the next section.

15 The Jordan Canonical Form

Definition Let A\ € C and define the n x n matrix

A1 0 ... 00
0O x 1 ... 00

To() = 00X ... 00
00 0 ... 21
0 0 0 ... 0

Such a matrix is called a Jordan block.
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For example

5®) = (5 3 ) 0=

Proposition 15.1 Let J = J,(A).
(1) The char poly of J is (x — A\)".
(2) X is the only eigenvalue of J: its algebraic mult is n and its geometric

mult is 1.

(8) J — X = J,(0), and multiplication by J — A sends the standard
bastis vectors

o oo

O O =

= )
S~
—~
>
N—r
Il
—
S
SN—r

en = €ep_1 — - —ex— e — 0.
(4) (J =A™ =0, and fori < n, (J — X)* sends e, — en_i, €n_1 —
en—i—1 and so on.

The proof is routine.

Block diagonal matrices

If Ay,..., A are square matrices, where A; is n; x n;, we define the block
diagonal matrix

A, 0 0

0 A 0
A DA ® A, = 2

0 0 A

This is n x n, where n = > n,.

For example, if A = <_21 (1)> and B = (3), then
2 00
ApB=|-1 1 0
0 0 3

Proposition 15.2 Let A= A) @ --- ® Ay and let p;(x) be the char poly of
A;.
(1) The char poly of A is [[% pi(x).

(2) The set of eigenvalues of A is the union of the set of eigenvalues of
the Ai ’s.
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(8) For any polynomial q(z),
9(A) = q(A1) & - - © q(A).

(4) For any eigenvalue \ of A, its geometric mult for A is the sum of its
geometric mults for the A;, i.e. dim E\(A) = > dim E)(4;).

Proof Parts (1)-(3) are clear, and (4) is Sheet 9, Q3.

Here is the main theorem of this section, indeed one of the main theorems
in the whole of linear algebra.

Theorem 15.3 (Jordan Canonical Form) Let A be an nxn matriz over
C. Then A is similar to a matriz of the form

Ini (A1) @ Jny(A2) @ -+ @ Iy (Ag)

where Y n; = n (note that the evalues \; are not necessarily distinct). This
is called the Jordan canonical form (JCF) of A, and is unique, apart
from changing the order of the Jordan blocks.

Proof later.

Here are a few examples of JCF's:

1 1 0 0 1 1 0 0
01 0 0 01 1 0

Jg(l) SY) JQ(I) = 001 1| J3(1) D Jl(l) = 0010l
0 0 0 1 0 0 0 1

(the theorem says these are not similar — see the end of the last section),

0 0 0
J0) @ Jo(—i)=|0 —i 1
0 0 —i

Notice that the only diagonal JCF matrices are of the form J;(A1) &
- @ J1(A\g) — so in some sense “most” matrices are not diagonalisable.

Notice also that a JCF matrix is upper triangular, so one consequence
of the theorem is that every n x n matrix over C can be “triangularised”,
i.e. is similar to a triangular matrix.
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At this point I have become somewhat cheesed off with typing all these
notes, so I am going to stop here and tell you to rely on the excellent notes
you wrote in the lectures. I have put some notes on the proof of the JCF
theorem on the website, so you can’t complain too much.
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