
M2PM2 Notes

By popular request, here are some notes on the M2PM2 lectures. They
should not be used as a substitute for going to lectures: the notes will just
contain the results, proofs and a few examples. The lectures will hopefully
have much more discussion of the proofs, and many more examples, as well
as fine artwork.....

Like M1P2 last year, this will be a course of two halves:

(A) Group theory; (B) Linear Algebra.

1 Revision from M1P2

Would be a good idea to refresh your memory on the following topics from
group theory.

(a) Group axioms: closure, associativity, identity, inverses

(b) Examples of groups:

(Z,+), (Q,+), (Q∗,×), (C∗,×), etc

GL(n,R), the group of all invertible n×n matrices over R, under matrix
multiplication

Sn, the symmetric group, the set of all permutations of {1, 2, . . . , n},
under composition. Recall the cycle notation for permutations – every per-
mutation can be expressed as a product of disjoint cycles.

For p prime Z∗p = {[1], [2], . . . , [p − 1]} is a group under multiplication
modulo p.

Cn = {x ∈ C : xn = 1} = {1, ω, ω2, . . . , ωn−1} is a cyclic group of size n,
where ω = e2πi/n.

(c) Some theory:

Criterion for subgroups: H is a subgroup of G iff (1) e ∈ H; (2) x, y ∈
H ⇒ xy ∈ H, and (3) x ∈ H ⇒ x−1 ∈ H.

For a ∈ G, we define the cyclic subgroup 〈a〉 = {an : n ∈ Z}. The size
of 〈a〉 is equal to o(a), the order of a, which is defined to be the smallest
positive integer k such that ak = e.

Lagrange: if H is a subgroup of a finite group G then |H| divides |G|.

Consequences: (1) For any element a ∈ G, o(a) divides |G|.
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(2) If |G| = n then xn = e for all x ∈ G

(3) If |G| is prime then G is a cyclic group.

2 More examples: symmetry groups

For any object in the plane R2 (later R3) we’ll show how to define a group
called the symmetry group of the object. This group will consist of functions
called isometries, which we now define. Recall for x = (x1, x2), y = (y1, y2) ∈
R2, the distance

d(x, y) =
√
(x1 − y1)2 + (x2 − y2)2.

We define an isometry of R2 to be a bijection f : R2 → R2 which preserves
distance, i.e. for all x, y ∈ R2,

d(f(x), f(y)) = d(x, y).

There are many familiar examples of isometries:

(1) Rotations: let ρP,θ be the function R2 → R2 which rotates every
point about P through angle θ. This is an isometry.

(2) Reflections: if l is a line, let σl be the function which sends every
point to its reflection in l. This is an isometry.

(3) Translations: for a ∈ R2, let τa be the translation sending x→ x+ a
for all x ∈ R2. This is an isometry.

Not every isometry is one of these three types – for example a glide-reflection
(i.e. a function of the form σl ◦τa) is not a rotation, reflection or translation.

Define I(R2) to be the set of all isometries of R2. For isometries f, g, we
have the usual composition function f ◦ g defined by f ◦ g(x) = f(g(x)).

Proposition 2.1 I(R2) is a group under composition.

Proof Closure: Let f, g ∈ I(R2). We must show f ◦ g is an isometry. It is
a bijection as f, g are bijections (recall M1F). And it preserves distance as

d(f ◦ g(x), f ◦ g(y)) = d(f(g(x)), f(g(y)))
= d(g(x), g(y) (as f is isometry)
= d(x, y) (as g is isometry).

Assoc: this is always true for composition of functions (since f ◦ (g ◦h)(x) =
(f ◦ g) ◦ h(x) = f(g(h(x)))).
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Identity is the identity function e defined by e(x) = x for all x ∈ R2, which
is obviously an isometry.

Inverses: let f ∈ I(R2). Then f−1 exists as f is a bijection, and f−1

preserves distance since

d(f−1(x), f−1(y)) = d(f(f−1(x)), f(f−1(y))) = d(x, y).

So we’ve checked all the axioms and I(R2) is a group. �

Now let Π be a subset of R2. For a function g : R2 → R2,

g(Π) = {g(x) | x ∈ Π}

Example: Π =square with centre in the origin and aligned with axes,
g = ρπ/4. Then g(Π) is the original square rotated by π/4.

Definition The symmetry group of Π is G(Π) – the set of isometries g such
that g(Π) = Π, i.e.

G(Π) =
{
g ∈ I(R2) | g(Π) = Π

}
.

Example: For the square from the previous example, G(Π) contains ρπ/2,
σx. . .

Proposition 2.2 G(Π) is a subgroup of I(R2).

Proof We check the subgroup criteria:

(1) e ∈ G(Π) as e(Π) = Π.

(2) Let f, g ∈ G(Π), so f(Π) = g(Π) = Π. So

f ◦ g(Π) = f(g(Π)) (1)

= f(Π) (2)

= Π. (3)

So f ◦ g ∈ G(Π).

(3) Let f ∈ G(Π), so
f(Π) = Π.
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Apply f−1 to get

f−1(f(Π)) = f−1(Π) (4)

Π = f−1(Π) (5)

and f−1 ∈ G(Π). �

So we have a vast collection of new examples of groups G(Π).

Examples

1. Equilateral triangle (= Π)
Here G(Π) contains

3 rotations : e = ρ0, ρ = ρ2π/3, ρ
2 = ρ4π/3,

3 reflections : σ1 = σl1 , σ2 = σl2 , σ3 = σl3 .

Each of these corresponds to a permutation of the corners 1, 2, 3:

e ∼ e, (6)

ρ ∼ (1 2 3), (7)

ρ2 ∼ (1 3 2), (8)

σ1 ∼ (2 3), (9)

σ2 ∼ (1 3), (10)

σ3 ∼ (1 2). (11)

Any isometry in G(Π) permutes the corners. Since all the permu-
tations of the corners are already present, there can’t be any more
isometries in G(Π). So the Symmetry group of equilateral triangle is

{
e, ρ, ρ2, σ1, σ2, σ3

}
,

called the dihedral group D6.

Note that it is easy to work out products in D6: e.g.

ρσ3 ∼ (1 2 3)(1 2) = (1 3) (12)

∼ σ2. (13)

2. The square
Here G = G(Π) contains
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4 rotations : e, ρ, ρ2, ρ3 where ρ = ρπ/2,

4 reflections : σ1, σ2, σ3, σ4 where σi = σli .

So |G| ≥ 8. We claim that |G| = 8: Any g ∈ G permutes the corners
1, 2, 3, 4 (as g preserves distance). So g sends

1→ i, (4 choices of i)

2→ j, neighbour of i, (2 choices for j)

3→ oppositeofi,

4→ oppositeofj.

So |G| ≤ (num. of choices for i)× (for j) = 4× 2 = 8. So |G| = 8.
Symmetry group of the square is

{
e, ρ, ρ2, ρ3, σ1, σ2, σ3, σ4

}
,

called the dihedral group D8.

Can work out products using the corresponding permutations of the
corners.

e ∼ e, (14)

ρ ∼ (1 2 3 4), (15)

ρ2 ∼ (1 3)(2 4), (16)

ρ3 ∼ (1 4 3 2), (17)

σ1 ∼ (1 4)(2 3), (18)

σ2 ∼ (1 3), (19)

σ3 ∼ (1 2)(3 4), (20)

σ4 ∼ (2 4). (21)

For example

ρ3σ1 → (1 4 3 2)(1 4)(2 3) = (1 3) (22)

→ σ2. (23)

Note that not all permutations of the corners are present in D8, e.g.
(1 2).

More on D8: Define H to be the cyclic subgroup of D8 generated by
ρ, so

H = 〈ρ〉 =
{
e, ρ, ρ2, ρ3

}
.
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Write σ = σ1. The right coset

Hσ =
{
σ, ρσ, ρ2σ, ρ3σ

}

is different from H.

H Hσ

So the two distinct right cosets of H in D8 are H and Hσ, and

D8 = H ∪Hσ.

Hence

Hσ =
{
ρ, ρσ, ρ2σ, ρ3σ

}
(24)

= {σ1, σ2, σ3, σ4} . (25)

So the elements of D8 are

e, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ.

To work out products, use the “magic equation” (see Sheet 1, Question
2)

σρ = ρ−1σ.

3. Regular n-gon
Let Π be the regular polygon with n sides. Symmetry group G = G(Π)
contains

n rotations : e, ρ, ρ2, . . . , ρn−1 where ρ = ρ2π/n,

n reflections σ1, σ2, . . . , σn where σi = σli .

So |G| ≥ 2n. We claim that |G| = 2n.

Any g ∈ G sends corners to corners, say

1→ i, (n choices for i)

2→ j neighbour of i. (2 choices for j)

Then g sends n to the other neighbour of i and n− 1 to the remaining
neighbour of g(n) and so on. So once i, j are known, there is only one
possibility for g. Hence

|G| ≤ number of choices for i, j = 2n.
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Therefore |G| = 2n.

Symmetry group of regular n-gon is

D2n =
{
e, ρ, ρ2, . . . , ρn, σ1, . . . , σn

}
,

the dihedral group of size 2n.

Again can work in D2n using permutations

ρ → (1 2 3 ∙ ∙ ∙ n) (26)

σ1 → (2 n)(3 n− 1) ∙ ∙ ∙ (27)

4. Benzene molecule
C6H6. Symmetry group is D12.

5. Infinite strip of F’s

. . . F F F . . .

−1 0 1

What is symmetry group G(Π)?

G(Π) contains translation

τ(1,0) : v 7→ v + (1, 0).

Write τ = τ(1,0). Then G(Π) contains all translations τ
n = τ(n,0). Note

G(Π) is infinite. We claim that

G(Π) = {τn | n ∈ Z} (28)

= 〈τ〉 , (29)

infinite cyclic group.

Let g ∈ G(Π). Must show that g = τn for some n. Say g sends F at 0
to F at n. Note that τ−n sends F at n to F at 0. So τ−ng sends F at 0
to F at 0. So τ−ng is a symmetry of the F at 0. It is easy to observe
that F has only symmetry e. Hence

τ−ng = e (30)

τnτ−ng = τn (31)

g = τn. (32)

Note Various other figures have more interesting symmetry groups, e.g.
infinite strip of E’s, square tiling of a plane, octagons and squares tiling of
the plane, 3 dimensions – platonic solids. . . later.
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3 Isomorphism

Let G = C2 = {1,−1}, H = S2 = {e, a} (where a = (1 2)). Multiplication
tables:

Of G : 1 −1
1 1 −1
−1 −1 1

Of H : e a

e e a

a a e

These are the same, except that the elements have different labels (1 ∼ e,
−1 ∼ a).

Similarly for G = C3 = {1, ω, ω2}, H = 〈a〉 = {e, a, a2} (where a =
(1 2 3) ∈ S3):

Of G : 1 ω ω2

1 1 ω ω2

ω ω ω2 1
ω2 ω2 1 ω

Of H : e a a2

e e a a2

a a a2 e

a2 a2 e a

Again, these are same groups with relabelling

1 ∼ e,

ω ∼ a,

ω2 ∼ a2.

In these examples, there is a “relabelling” function φ : G→ H such that if

g1 7→ h1,
g2 7→ h2,

then
g1g2 7→ h1h2.

Definition G,H groups. A function φ : G→ H is an isomorphism if

(1) φ is a bijection,

(2) φ(g1)φ(g2) = φ(g1g2) for all g1, g2 ∈ G.
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If there exists an isomorphism φ : G→ H, we say G is isomorphic to H
and write G ∼= H.

Notes 1. If G ∼= H then |G| = |H| (as φ is a bijection).

2. The relation ∼= is an equivalence relation, i.e.

• G ∼= G ,

• G ∼= H ⇒ H ∼= G,

• G ∼= H,H ∼= K ⇒ G ∼= K.

Example Which pairs of the following groups are isomorphic?

G1 = C4 = 〈i〉 = {1,−1, i,−i} ,
G2 = symmetry group of a rectangle = {e, ρπ, σ1, σ2} ,
G3 = cyclic subgroup of D8 〈ρ〉 =

{
e, ρ, ρ2, ρ3

}
.

1. G1 ∼= G3? To prove this, define φ : G1 → G2

i 7→ ρ,

−1 7→ ρ2,

−i 7→ ρ3,

1 7→ e,

i.e. φ : in 7→ ρn. To check that φ is an isomorphism

(1) φ is a bijection,

(2) for m,n ∈ Z
φ(imin) = φ(im+n)

= ρm+n

= ρmρn

= φ(im)φ(in).

So φ is an isomorphism and G1 ∼= G3.

Note that there exist many bijections G1 → G3 which are not isomor-
phisms.

2. G2 ∼= G3 or G2 ∼= G1? Answer: G2 6∼= G1. By contradiction. Assume
there exists an isomorphism φ : G1 → G2. Say φ(i) = x ∈ G2, φ(1) = y ∈
G2. Then

φ(−1) = φ(i2) = φ(i ∙ i) = φ(i)φ(i) = x2 = e

9



as g2 = e for all g ∈ G2. Similarly φ(1) = φ(1 ∙ 1) = φ(1)φ(1) = y2 = e. So
φ(−1) = φ(1), a contradiction as φ is a bijection.

In general, to decide whether two groups G,H are isomorphic:

• If you think G ∼= H, try to define an isomorphism φ : G→ H.

• If you think G 6∼= H, try to use the following proposition.

Proposition 3.1 Let G,H be groups.

(1) If |G| 6= |H| then G 6∼= H.

(2) If G is abelian and H is not abelian, then G 6∼= H.

(3) If there is an integer k such that G and H have different number of
elements of order k, then G 6∼= H.

Proof (1) Obvious.

(2) We show that if G is abelian and G ∼= H, then H is abelian (this
gives (2)). Suppose G is abelian and φ : G → H is an isomorphism. Let
h1, h2 ∈ H. As φ is a bijection, there exist g1, g2 ∈ G such that h1 = φ(g1)
and h2 = φ(g2). So

h2h1 = φ(g2)φ(g1)
= φ(g2g1)
= φ(g1)φ(g2)
= h1h2.

(3) Let
Gk = {g ∈ G | o(g) = k} ,
Hk = {h ∈ H | o(h) = k} .

We show that G ∼= H implies |Gk| = |Hk| for all k (this gives (3)).

Suppose G ∼= H and let φ : G → H be an isomorphism. We show that
φ sends Gk to Hk: Let g ∈ Gk, so o(g) = k, i.e.

gk = eG, and g
i 6= eG for 1 ≤ i ≤ k − 1.

Now φ(eG) = eH , since

φ(eG) = φ(eGeG)
= φ(eG)φ(eG)

φ(eG)
−1φ(eG) = φ(eG)

eH = φ(eG).
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Also
φ(gi) = φ(gg ∙ ∙ ∙ g) (i times)

= φ(g)φ(g) ∙ ∙ ∙φ(g)
= φ(g)i.

Hence
φ(g)k = φ(eG) = eH ,
φ(g)i 6= eH for 1 ≤ i ≤ k − 1.

In other words, φ(g) has order k, so φ(g) ∈ Hk. So φ sends Gk to Hk. As φ
is 1-1, this implies |Gk| ≤ |Hk|.

Also φ−1 : H → G is an isomorphism and similarly sends Hk to Gk,
hence |Hk| ≤ |Gk|. Therefore |Gk| = |Hk|. �

Examples 1. Let G = S4, H = D8. Then |G| = 24, |H| = 8, so G 6∼= H.

2. Let G = S3, H = C6. Then G is non-abelian, H is abelian, so G 6∼= H.

3. Let G = C4, H = symmetry group of the rectangle = {e, ρπ, σ1, σ2}.
Then G has 1 element of order 2, H has 3 elements of order 2, so G 6∼= H.

4. Question: (R,+) ∼= (R∗,×)? Answer: No, since (R,+) has 0 elements
of order 2, (R∗,×) has 1 element of order 2.

Cyclic groups

Proposition 3.2 (1) If G is a cyclic group of size n, then G ∼= Cn.

(2) If G is an infinite cyclic group, then G ∼= (Z,+).

Proof (1) Let G = 〈x〉, |G| = n, so o(x) = n and therefore

G =
{
e, x, x2, . . . , xn−1

}
.

Recall
Cn =

{
1, ω, ω2, . . . , ωn−1

}
,

where ω = e2πi/n. Define φ : G → G by φ(xr) = ωr for all r. Then φ is a
bijection, and

φ(xrxs) = φ(xr+s)
= ωr+s

= ωrωs

= φ(xr)φ(xs).

So φ is an isomorphism, and G ∼= Cn.
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(2) Let G = 〈x〉 be infinite cyclic, so o(x) =∞ and

G =
{
. . . , x−2, x−1, e, x, x2, x3, . . .

}
,

all distinct. Define φ : G → (Z,+) by φ(xr) = r for all r. Then φ is an
isomorphism, so G ∼= (Z,+). �

This proposition says that if we think of isomorphic groups as being
“the same”, then there is only one cyclic group of each size. We say: “up
to isomorphism”, the only cyclic groups are Cn and (Z,+).

Example Cyclic subgroup 〈3〉 of (Z,+) is {3n | n ∈ Z}, infinite, so by the
proposition 〈3〉 ∼= (Z,+).

4 Even and odd permutations

We’ll classify each permutation in Sn as either “even” or “odd” (reason given
later).

Example For n = 3. Consider the expression

Δ = (x1 − x2)(x1 − x3)(x2 − x3),

a polynomial in 3 variables x1, x2, x3. Take each permutation in S3 to
permute x1, x2, x3 in the same way it permutes 1, 2, 3. Then each g ∈ S3
sends Δ to ±Δ. For example

for e, (1 2 3), (1 3 2) : Δ 7→ +Δ,

for (1 2), (1 3), (2 3) : Δ 7→ −Δ.

Generalizing this: for arbitrary n ≥ 2, define

Δ =
∏

i<j

(xi − xj) ,

a polynomial in n variables x1, . . . , xn.

If we let each permutation g ∈ Sn permute the variables x1, . . . , xn just
as it permutes 1, . . . , n then g sends Δ to ±Δ.

Definition For g ∈ Sn, define the signature sgn(g) to be +1 if g(Δ) = Δ
and −1 if g(Δ) = −Δ. So

g(Δ) = sgn(g)Δ.
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The function sgn : Sn → {+1,−1} is the signature function on Sn. Call g
an even permutation if sgn(g) = 1, and odd permutation if sgn(g) = −1.

Example In S3 e, (1 2 3), (1 3 2) are even and (1 2), (1 3), (2 3) are odd.

Given (1 2 3 5)(6 7 9)(8 4 10) ∈ S10, what’s its signature ? Our next
aim is to be able answer such questions instantaneously. This is the key:

Proposition 4.1 (a) sgn(xy) = sgn(x)sgn(y) for all x, y ∈ Sn

(b) sgn(e) = 1, sgn(x−1) = sgn(x).

(c) If t = (i j) is a 2-cycle then sgn(t) = −1.

Proof (a) By definition

x(Δ) = sgn(x)Δ,
y(Δ) = sgn(y)Δ.

So
xy(Δ) = x(y(Δ))

= x(sgn(y)Δ)
= sgn(y)x(Δ) = sgn(y)sgn(x)Δ.

Hence
sgn(xy) = sgn(x)sgn(y).

(b) We have e(Δ) = Δ, so sgn(e) = 1. So

1 = sgn(e) = sgn(xx−1)
= sgn(x)sgn(x−1) (by (a))

and hence sgn(x) = sgn(x−1).

(c) Let t = (i j), i < j. We count the number of brackets in Δ that are
sent to brackets (xr − xs), r > s. These are

(xi − xj),
(xi − xi+1), . . . , (xi − xj−1),
(xi+1 − xj), . . . , (xj−1 − xj).

Total number of these is 2(j− i− 1)+1, an odd number. Hence t(Δ) = −Δ
and sgn(t) = −1. �

To work out sgn(x), x ∈ Sn here’s what we shall do:
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• express x as a product of 2-cycles

• use proposition 4.1

Proposition 4.2 Let c = (a1a2 . . . ar), an r-cycle. Then c can be expressed
as a product of (r − 1) 2-cycles.

Proof Consider the product

(a1ar)(a1ar−1) ∙ ∙ ∙ (a1a3)(a1a2).

This product sends

a1 7→ a2 7→ a3 7→ ∙ ∙ ∙ 7→ ar−1 7→ a1.

Hence the product is equal to c. �

Corollary 4.3 The signature of an r-cycle is (−1)r−1.

Proof Follows from previous two props. �

Corollary 4.4 Every x ∈ Sn can be expressed as a product of 2-cycles.

Proof From first year, we know that

x = c1 ∙ ∙ ∙ cm,

a product of disjoint cycles ci. Each ci is a product of 2-cycles by 4.2. Hence
so is x. �

Proposition 4.5 Let x = c1 ∙ ∙ ∙ cm a product of disjoint cycles c1, . . . , cm of
lengths r1, . . . , rm. Then

sgn(x) = (−1)r1−1 ∙ ∙ ∙ (−1)rm−1.

Proof We have

sgn(x) = sgn(c1) ∙ ∙ ∙ sgn(cm) by 4.1(a)
= (−1)r1−1 ∙ ∙ ∙ (−1)rm−1 by 4.3.

Example (1 2 5 7)(3 4 6)(8 9)(10 12 83)(79 11 26 15) has sgn = −1.

Importance of signature
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1. We’ll use it to define a new family of groups below.

2. Fundamental in the theory of determinants (later).

Definition Define

An = {x ∈ Sn | sgn(x) = 1} ,

the set of even permutations in Sn. Call An the alternating group (after
showing that it is a group).

Theorem 4.6 An is a subgroup of Sn, of size
1
2n!.

Proof (a) An is a subgroup:

(1) e ∈ An as sgn(e) = 1.

(2) for x, y ∈ An,
sgn(x) = sgn(y) = 1,
sgn(xy) = sgn(x)sgn(y) = 1,

so xy ∈ An,

(3) for x ∈ An, we have sgn(x) = 1, so by 4.1(b), sgn(x−1) = 1, i.e.
x−1 ∈ An.

(b) |An| = 1
2n!: Recall that there are right cosets of An,

An = Ane,An(1 2) = {x(1 2) | x ∈ An} .

These cosets are distinct (as (1 2) ∈ An(1 2) but (1 2) /∈ An), and have equal
size (i.e. |An| = |An(1 2)|). We show that Sn = An ∪ An(1 2): Let g ∈ Sn.
If g is even, then g ∈ An. If g is odd, then g(1 2) is even (as sgn(g(1 2)) =
sgn(g)sgn(1 2) = 1), so g(1 2) = x ∈ An. Then g = x(1 2) ∈ An(1 2).

So |An| = 1
2 |Sn| =

1
2n!. �

Examples

1. A3 = {e, (1 2 3), (1 3 2)}, size 3 = 1
23!.

2. A4:
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cycle shape e (2) (3) (4) (2, 2)

in A4? yes no yes no yes

no. 1 8 3

Total |A4| = 12 = 1
24!.

3. A5:

cycle shape e (2) (3) (4) (5) (2, 2) (3, 2)

in A5? yes no yes no yes yes no

no. 1 20 24 15

Total |A5| = 60 = 1
25!.

5 Direct Products

So far, we’ve seen the following examples of finite groups: Cn, D2n, Sn, An.
We’ll get many more using the following construction.

Recall: if T1, T2, . . . , Tn are sets, the Cartesian product T1×T2×∙ ∙ ∙×Tn
is the set consisting of all n-tuples (t1, t2, . . . , tn) with ti ∈ Ti.

Now let G1, G2, . . . , Gn be groups. Form the Cartesian product G1 ×
G2 × ∙ ∙ ∙ ×Gn and define multiplication on this set by

(x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn)

for xi, yi ∈ Gi.

Definition Call G1×∙ ∙ ∙×Gn the direct product of the groups G1, . . . , Gn.

Proposition 5.1 Under above defined multiplication, G1 × ∙ ∙ ∙ × Gn is a
group.

Proof

• Closure True by closure in each Gi.

• Associativity Using associativity in each Gi,

[(x1, . . . , xn)(y1, . . . , yn)] (z1, . . . , zn) = (x1y1, . . . , xnyn)(z1, . . . , zn)
= ((x1y1)z1, . . . , (xnyn)zn)
= (x1(y1z1), . . . , xn(ynzn))
= (x1, . . . , xn)(y1z1, . . . , ynzn)
= (x1, . . . , xn) [(y1, . . . , yn)(z1, . . . , zn)] .
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• Identity is (e1, . . . , en), where ei is the identity of Gi.

• Inverse of (x1, . . . , xn) is (x
−1
1 , . . . , x

−1
n ).

Examples

1. Some new groups: C2×C2, C2×C2×C2, S4×D36, A5×A6×S297, . . . ,Z×
Q× S13, . . ..

2. Consider C2 × C2. Elements are {(1, 1), (1,−1), (−1, 1), (−1,−1)}.
Calling these e, a, b, ab, mult table is

e a b ab

e e a b ab

a a e ab b

b b ab e a

ab ab b a e

G = C2 × C2 is abelian and x2 = e for all x ∈ G.

3. Similarly C2 × C2 × C2 has elements (±1,±1,±1), size 8, abelian,
x2 = e for all x.

Proposition 5.2 (a) Size of G1 × ∙ ∙ ∙ ×Gn is |G1||G2| ∙ ∙ ∙ |Gn|.

(b) If all Gi are abelian so is G1 × ∙ ∙ ∙ ×Gn.

(c) If x = (x1, . . . , xn) ∈ G1×∙ ∙ ∙×Gn, then order of x is the least common
multiple of o(x1), . . . , o(xn).

Proof (a) Clear.

(b) Suppose all Gi are abelian. Then

(x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn)
= (y1x1, . . . , ynxn)
= (y1, . . . , yn)(x1, . . . , xn).

(c) Let ri = o(xi). Recall from M1P2 that x
k
i = e iff ri|k. Let r =

lcm(r1, . . . , rn). Then

xr = (xr1, . . . , x
r
n)

= (e1, . . . , en) = e.
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For 1 ≤ s < r, ri 6 |s for some i. So xsi 6= e. So

xs = (. . . , xsi , . . .) 6= (e1, . . . , en).

Hence r = o(x). �

Examples

1. Since cyclic groups Cr are abelian, so are all direct products

Cr1 × Cr2 × ∙ ∙ ∙ × Crk .

2. C4×C2 and C2×C2×C2 are abelian of size 8. Are they isomorphic?

Claim: NO.

Proof Count the number of elements of order 2 :

In C4 × C2 these are (±1,±1) except for (1, 1), so there are 3.

In C2 ×C2 ×C2, all the elements except e have order 2, so there
are 7.

So C4 × C2 6∼= C2 × C2 × C2.

Proposition 5.3 If hcf(m,n) = 1, then Cm × Cn ∼= Cmn.

Proof Let Cm = 〈α〉, Cn = 〈β〉. So o(α) = m, o(β) = n. Consider

x = (α, β) ∈ Cm × Cn.

By 5.2(c), o(x) = lcm(m,n) = mn. Hence cyclic subgroup 〈x〉 of Cm × Cn
has size mn, so is whole of Cm ×Cn. So Cm ×Cn = 〈x〉 is cyclic and hence
Cm × Cn ∼= Cmn by 2.2. �

Direct products are fundamental to the theory of abelian groups:

Theorem 5.4 Every finite abelian group is isomorphic to a direct product
of cyclic groups.

Won’t give a proof here. Reference: [Allenby, p. 254].

Examples
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1. Abelian groups of size 6: by theorem 5.4, possibilities are C6, C3×C2.
By 5.3, these are isomorphic, so there is only one abelian group of size
6 (up to isomorphism).

2. By 5.4, the abelian groups of size 8 are: C8, C4 × C2, C2 × C2 × C2.

Claim : No two of these are isomorphic.

Proof

Group C2 × C2 × C2 C4 × C2 C8

| {x | o(x) = 2} | 7 3 1

So up to isomorphism, there are 3 abelian groups of size 8.

6 Groups of small size

We’ll find all groups of size ≤ 7 (up to isomorphism). Useful results:

Proposition 6.1 If |G| = p, a prime, then G ∼= Cp.

Proof By corollary of Lagrange, G is cyclic. Hence G ∼= Cp by 2.2.

Proposition 6.2 If |G| is even, then G contains an element of order 2.

Proof Suppose |G| is even and G has no element of order 2. List the
elements of G as follows:

e, x1, x
−1
1 , x2, x

−1
2 , . . . , xk, x

−1
k .

Note that xi 6= x
−1
i since o(xi) 6= 2. Hence |G| = 2k+ 1, a contradiction. �

Groups of size 1, 2, 3, 5, 7

By 6.1, only such groups are C1, C2, C3, C5, C7.

Groups of size 4

Proposition 6.3 The only groups of size 4 are C4 and C2 × C2.

Proof Let |G| = 4. By Lagrange, every element of G has order 1, 2 or 4.
If there exists x ∈ G of order 4, then 〈x〉 is cyclic, so G ∼= C4. Now suppose
o(x) = 2 for all x 6= e, x ∈ G. So x2 = e for all x ∈ G.
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Let e, x, y be 3 distinct elements of G. If xy = e then y = x−1 = x, a
contradiction; if xy = x then y = e, a contradiction; similarly xy 6= y. It
follows that

G = {e, x, y, xy} .

As above, yx 6= e, x, y hence yx = xy. So multiplication table of G is

e x y xy

e e x y xy

x x e xy y

y y xy e x

xy xy y x e

This is the same as the table for C2 × C2, so G ∼= C2 × C2. �

Groups of size 6

We know the following groups of size 6: C6, D6, S3. Recall D6 is the
symmetry group of the equilateral triangle and has elements

e, ρ, ρ2, σ, ρσ, ρ2σ.

satisfying the following equations:

ρ3 = e,

σ2 = e

σρ = ρ2σ.

The whole multiplication table of D6 can be worked out using these equa-
tions. e.g.

σ ∙ (ρσ) = ρ2σσ = ρ2.

Proposition 6.4 Up to isomorphism, the only groups of size 6 are C6 and
D6.

Proof Let G be a group with |G| = 6. By Lagrange, every element of G
has order 1, 2, 3 or 6. If there exists x ∈ G of order 6, then G = 〈x〉 is cyclic
and therefore G ∼= C6 by 2.2. So assume G has no elements of order 6. Then
every x ∈ G, (x 6= e) has order 2 or 3. If all have order 2 then x2 = e for all
x ∈ G. So by Sheet 2 Q5, |G| is divisible by 4, a contradiction. We conclude
that there exists x ∈ G with o(x) = 3. Also by 6.2, there is an element y of
order 2.
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Let H = 〈x〉 =
{
e, x, x2

}
. Then y /∈ H so Hy 6= H and

G = H ∪Hy =
{
e, x, x2, y, xy, x2y

}
.

What is yx? Well,

yx = e ⇒ y = x−1

yx = x ⇒ y = e

yx = x2 ⇒ y = x

yx = y ⇒ x = e





a contradiction.

If yx = xy, let’s consider the order of xy:

(xy)2 = xyxy = xxyy (as yx = xy) = x2y2 = x2.

Similarly
(xy)3 = x3y3 = y 6= e.

So xy does not have order 2 or 3, a contradiction. Hence yx 6= xy. We
conclude that yx = x2y.

At this point we know the following:

• G =
{
e, x, x2, y, xy, x2y

}
,

• x3 = e, x2 = e, yx = x2y.

In exactly the same way as for D6, can work out the whole multiplication
table for G using these equations. It will be the same as the table for D6
(with x, y instead of ρ, σ). So G ∼= D6. �

Remark Note that |S3| = 6, and S3 ∼= D6.

Summary

Proposition 6.5 Up to isomorphism, the groups of size ≤ 7 are

Size Groups

1 C1
2 C2
3 C3
4 C4, C2 × C2
5 C5
6 C6, D6
7 C7
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Remarks on larger sizes

Size 8: here are the groups we know:

Abelian C8, C4 × C2, C2 × C2 × C2,

Non-abelian D8.

Any others? Yes, the quaternion group Q8:

Define matrices

A =

(
i 0
0 −i

)

, B =

(
0 1
−1 0

)

.

Check equations:

A4 = I, B4 = I, A2 = B2, BA = A4B.

Define
Q8 = {ArBs | r, s ∈ Z}

= {AmBn | 0 ≤ m ≤ 3, 0 ≤ n ≤ 1} .

Sheet 3 Q5: |Q8| = 8. Q8 is a subgroup of GL(2,C) and is not abelian and
Q8 6∼= D8. Call Q8 the quaternion group. Sheet 3 Q7: The only non-abelian
groups of size 8 are D8 and Q8. Yet more info:

Size Groups

9 only abelian (Sh3 Q4)
10 C10, D10
11 C11
12 abelian, D12, A4 + one more
13 C13
14 C14, D14
15 C15
16 14 groups

7 Homomorphisms, normal subgroups and factor
groups

Homomorphisms are functions between groups which “preserve multiplica-
tion”.
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Definition Let G,H be groups. A function φ : G→ H is a homomorphism
if φ(xy) = φ(x)φ(y) for all x, y ∈ G.

Note that an isomorphism is a homomorphism which is a bijection.

Examples

1. G,H any groups. Define φ : G→ H by

φ(x) = eH∀x ∈ G

Then φ is a homomorphism since φ(xy) = eH = eHeH = φ(x)φ(y).

2. Recall the signature function sgn : Sn → C2. By 4.1(a), sgn(xy) =
sgn(x)sgn(y), so sgn is a homomorphism.

3. Define φ : (R,+)→ (C∗,×) by

φ(x) = e2πix∀x ∈ R.

Then φ(x + y) = e2πi(x+y) = e2πixe2πiy = φ(x)φ(y), so φ is a homo-
morphism.

4. Define φ : D2n → C2 (writingD2n =
{
e, ρ, . . . , ρn−1, σ, ρσ, . . . , ρn−1σ

}
)

by
φ(ρrσs) = (−1)s.

(so φ sends rotations to +1 and reflections to −1). Then φ is a homo-
morphism since:

φ
(
(ρrσs)(ρtσu)

)
= φ(ρr±tσs+u)
= (−1)s+u = φ(ρrσs)φ(ρrσu).

Proposition 7.1 Let φ : G→ H be a homomorphism

(a) φ(eG) = eH

(b) φ(x−1) = φ(x)−1 for all x ∈ G.

(c) o(φ(x)) divides o(x) for all x ∈ G.

Proof (a) Note that φ(eG) = φ(eGeG) = φ(eG)φ(eG). Multiply by φ(eG)
−1

to get eH = φ(eG).

(b) By (a), eH = φ(eG) = φ(xx
−1) = φ(x)φ(x−1). So φ(x−1) = φ(x)−1.
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(c) Let r = o(x). Then

φ(x)r = φ(x) ∙ ∙ ∙φ(x) = φ(x ∙ ∙ ∙x) = φ(xr) = φ(eG) = eH .

Hence o(φ(x)) divides r. �

Definition Let φ : G→ H be homomorphism. The image of φ is

Imφ = φ(G) = {φ(x) | x ∈ G} ⊆ H.

Proposition 7.2 If φ : G→ H is a homomorphism, then Imφ is a subgroup
of H.

Proof

(1) eH ∈ Imφ since eH = φ(eG).

(2) Let g, h ∈ Imφ. Then g = φ(x) and h = φ(y) for some x, y ∈ G, so
gh = φ(x)φ(y) = φ(xy) ∈ Imφ.

(3) Let g ∈ Imφ. Then g = φ(x) for some x ∈ G. So g−1 = φ(x)−1 =
φ(x−1) ∈ Imφ.

Hence Imφ is a subgroup of H. �

Examples

1. Is there a homomorphism φ : S3 → C3? Yes, φ(x) = 1 for all x ∈ S3.
For this homomorphism, Imφ = {1}.

2. Is there a homomorphism φ : S3 → C3 such that Imφ = C3?

To answer this, suppose φ : S3 → C3 is a homomorphism. Consider
φ(1 2). By 7.1(c), φ(1 2) has order dividing o(1 2) = 2. As φ(1 2) ∈ C3,
this implies that φ(1 2) = 1. Similarly φ(1 3) = φ(2 3) = 1. Hence

φ(1 2 3) = φ ((1 3)(1 2)) = φ(1 3)φ(1 2) = 1

and similarly φ(1 3 2) = 1. We’ve shown that

φ(x) = 1∀x ∈ S3.

So there is no surjective homomorphism φ : S3 → C3.
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Kernels

Definition Let φ : G→ H be a homomorphism. Then kernel of φ is

Kerφ = {x ∈ G | φ(x) = eH} .

Examples

1. If φ : G→ H is φ(x) = eH for all x ∈ G, then Kerφ = G.

2. For sgn : Sn → C2,

Ker(sgn) = {x ∈ Sn | sgn(x) = 1} = An, the alternating group.

3. If φ : (R,+)→ (C∗,×) is φ(x) = e2πix for all x ∈ R, then

Kerφ =
{
x ∈ R | e2πix = 1

}
= Z.

4. Let φ : D2n → C2 be given by φ(ρrσs) = (−1)s. Then Kerφ = 〈ρ〉.

Proposition 7.3 If φ : G → H is a homomorphism, then Kerφ is a sub-
group of G.

Proof

(1) eG ∈ Kerφ as φ(eG) = eH by 7.1.

(2) x, y ∈ Kerφ then φ(x) = φ(y) = eH , so φ(xy) = φ(x)φ(y) = eH ; i.e.
xy ∈ Kerφ.

(3) x ∈ Kerφ then φ(x) = eH , so φ(x)−1 = φ(x−1) = eH , so x−1 ∈ Kerφ.
�

In fact, Kerφ is a very special type of subgroup of G known as a normal
subgroup.

Normal subgroups

Definition Let G be a group, and N ⊆ G. We say N is a normal subgroup
of G if

(1) N is a subgroup of G,
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(2) g−1Ng = N for all g ∈ G, where g−1Ng =
{
g−1ng | n ∈ N

}
.

If N is a normal subgroup of G, write N CG.

Examples

1. G any group. Subgroup 〈e〉 = {e}CG as g−1eg = e for all g ∈ G. Also
subgroup G itself is normal, i.e. GCG, as g−1Gg = G for all g ∈ G.

Next lemma makes condition (2) a bit easier to check.

Lemma 7.4 Let N be a subgroup of G. Then NCG if and only if g−1Ng ⊆
N for all g ∈ G.

Proof

⇒ Clear.

⇐ Suppose g−1Ng ⊆ N for all g ∈ G. Let g ∈ G. Then

g−1Ng ⊆ N.

Using g−1 instead, we get (g−1)−1Ng−1 ⊆ N , hence

gNg−1 ⊆ N.

Hence N ⊆ g−1Ng. Therefore g−1Ng = N . �

Examples (1) We show that An C Sn. Need to show that

g−1Ang ⊆ An∀g ∈ Sn

(this will show An C Sn by 7.4).

For x ∈ An, using 4.1 we have

sgn(g−1xg) = sgn(g−1)sgn(x)sgn(g) = sgn(g−1) ∙ 1 ∙ sgn(g) = 1.

So g−1xg ∈ An for all x ∈ An. Hence

g−1Ang ⊆ An.

So An C Sn.
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(2) Let G = S3, N = 〈(1 2)〉 = {e, (1 2)}. Is N CG? Well,

(1 3)−1(1 2)(1 3) = (1 3)(1 2)(1 3) = (2 3) /∈ N.

So (1 3)−1N(1 3) 6= N and N 6 CS3.

(3) If G is abelian, then all subgroups N of G are normal since for g ∈ G,
n ∈ N ,

g−1ng = g−1gn = n,

and hence g−1Ng = N .

(4) Let D2n =
{
e, ρ, . . . , ρn−1, σ, ρσ, . . . , ρn−1σ

}
. Fix an integer r. Then

〈ρr〉CD2n.

Proof – sheet 4. (key: magic equation σρ = ρ−1σ, . . . , σρn = ρ−nσ).

Proposition 7.5 If φ : G→ H is a homomorphism, then KerφCG.

Proof Let K = Kerφ. By 7.3 K is a subgroup of G. Let g ∈ G, x ∈ K.
Then

φ(g−1xg) = φ(g−1)φ(x)φ(g) = φ(g)−1eHφ(g) = eH .

So g−1xg ∈ Kerφ = K. This shows g−1Kg ⊆ K. So K CG. �

Examples

1. We know that sgn : Sn → C2 is a homomorphism, with kernel An. So
An C Sn by 7.5.

2. Know φ : D2n → C2 defined by φ(ρrσs) = (−1)s is a homomorphism
with kernel 〈ρ〉. So 〈ρ〉CD2n.

3. Here’s a different homomorphism α : D8 → C2 where

α(ρrσs) = (−1)r.

This is a homomorphism, as

α((ρrσs)(ρtσu)) = α(ρr±tσs+u)
= (−1)r±t = (−1)r ∙ (−1)t

= α(ρrσs)α(ρtσu).
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The kernel of α is

Kerα = {ρrσs | r even} =
{
e, ρ2, σ, ρ2σ

}
.

Hence {
e, ρ2, σ, ρ2σ

}
CD8.

Factor groups

Let G be a group, N a subgroup of G. Recall that there are exactly |G||N |
different right cosets Nx (x ∈ G). Say

Nx1, Nx2, . . . , Nxr

where r = |G|
|N | . Aim is to make this set of right cosets into a group in a

natural way. Here is a “natural” definition of multiplication of these cosets:

(Nx)(Ny) = N(xy). (33)

Does this definition make sense? To make sense, we need:

Nx = Nx′

Ny = Ny′

}

⇒ Nxy = Nx′y′

for all x, y, x′, y′ ∈ G. This property may or may not hold.

Example G = S3, N = 〈(1 2)〉 = {e, (1 2)}. The 3 right cosets of N in G
are

N = Ne,N(1 2 3), N(1 3 2).

Also
N = N(1 2)
N(1 2 3) = N(1 2)(1 2 3) = N(2 3)
N(1 3 2) = N(1 2)(1 3 2) = N(1 3).

According to (33),

(N(1 2 3)) (N(1 2 3)) = N(1 2 3)(1 2 3) = N(1 3 2).

But (33) also says that

(N(2 3)) (N(2 3)) = N(2 3)(2 3) = Ne.

So (33) makes no sense in this example.

How do we make (33) make sense? The condition is that N CG. Key is
to prove the following:
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Proposition 7.6 Let N CG. Then for x1, x2, y1, y2 ∈ G

Nx1 = Nx2
Ny1 = Ny2

}

⇒ Nx1y1 = Nx2y2.

(Hence definition of multiplication of cosets in (33) makes sense when N C
G.)

To prove this we need a definition and a lemma: for H a subgroup of G
and x ∈ G define the left coset

xH = {xh : h ∈ H}.

Lemma 7.7 Suppose N CG. Then xH = Hx for all x ∈ G.

Proof Let h ∈ H. As H C G, xHx−1 = H, and so xhx−1 = h′ ∈ H.
Then xh = h′x ∈ Hx. This shows that xH ⊆ Hx. Similarly we see that
Hx ⊆ xH, hence xH = Hx. �

Proof of Prop 7.6

Let N CG. Suppose Nx1 = Nx2 and Ny1 = Ny2. Then

Nx1y1 = Nx2y1 as Nx1 = Nx2
= x2Ny1 by Prop 7.7
= x2Ny2 as Ny1 = Ny2
= Nx2y2 by Prop 7.7.�

So we have established that when N CG, the definition of multiplication
of cosets

(Nx)(Ny) = Nxy

for x, y ∈ G makes sense.

Theorem 7.8 Let N CG. Define G/N to be the set of all right cosets Nx
(x ∈ G). Define multiplication on G/N by

(Nx)(Ny) = Nxy.

Then G/N is a group under this multiplication.

Proof
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Closure obvious.

Associativity Using associativity in G

(NxNy)Nz = (Nxy)Nz
= N(xy)z
= Nx(yz)
= (Nx)(Nyz)
= Nx(NyNz).

Identity is Ne = N , since NxNe = Nxe = Nx and NeNx = Nex =
Nx.

Inverse of Nx is Nx−1, as NxNx−1 = Nxx−1 = Ne, the identity.

Definition The group G/N is called the factor group of G by N .

Note that

|G/N | =
|G|
|N |
.

Examples

1. An C Sn. Since
|Sn|
|An|
= 2, the factor group Sn/An has 2 elements

An, An(1 2).

So Sn/An ∼= C2. Note: in the group Sn/An the identity is the coset
An and the non identity element An(1 2) has order 2 as

(An(1 2))
2 = An(1 2)An(1 2) = An(1 2)(1 2) = An.

2. G any group. We know that G C G. What is the factor group G/G?
Ans: G/G has 1 element, the identity coset G. So G/G ∼= C1.

Also 〈e〉 = {e}CG. What is G/ 〈e〉? Coset 〈e〉 g = {g}, and multipli-
cation

(〈e〉 g) (〈e〉h) = 〈e〉 gh.

So G/ 〈e〉 ∼= G (isomorphism g 7→ 〈e〉 g).

3. G = D12 =
{
e, ρ, . . . , ρ5, σ, σρ, . . . , σρ5

}
where ρ6 = σ2 = e, σρ =

ρ−1σ.
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(a) Know that 〈ρ〉 C D12. Factor group D12/ 〈ρ〉 has 2 elements
〈ρ〉 , 〈ρ〉σ so D12/ 〈ρ〉 ∼= C2.

(b) Know also that
〈
ρ2
〉
=
{
e, ρ2, ρ4

}
C D12. So D12/

〈
ρ2
〉
has 4

elements, so
D12/

〈
ρ2
〉 ∼= C4 or C2 × C2.

Which? Well, let N =
〈
ρ2
〉
. The 4 elements of D12/N are

N,Nρ,Nσ,Nρσ.

We work out the order of each of these elements of D12/N :

(Nρ)2 = NρNρ = Nρ2

= N,

(Nσ)2 = NσNσ = Nσ2

= N,

(Nρσ)2 = N(ρσ)2

= N.

So all non-identity elements ofD12/N have order 2, henceD12/ 〈ρ〉 ∼=
C2 × C2.

(c) Also
〈
ρ3
〉
=
{
e, ρ3

}
CD12. Factor group D12

〈
ρ3
〉
has 6 elements

so is ∼= C6 or D6. Which? Let M =
〈
ρ3
〉
. The 6 elements of

D12/M are
M,Mρ,Mρ2,Mσ,Mρσ,Mρ2σ.

Let x =Mρ and y =Mσ. Then

x3 = (Mρ)3 =MρMρMρ =Mρ3

= M,

y2 = (Mσ)2 =Mσ2

= M,

yx = MσMρ =Mσρ =Mρ−1σ =Mρ−1Mσ
= x−1y.

SoD12/M =
{
identity, x, x2, y, xy, x2y

}
and x3 = y2 = identity,yx =

x−1y. So D12/
〈
ρ3
〉 ∼= D6.

Here’s a result tying all these topics together:

Theorem 7.9 (First Isomorphism Theorem) Let φ : G → H be a ho-
momorphism. Then

G/Kerφ ∼= Imφ.
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Proof Let K = Kerφ. So G/K is the group consisting of the cosets
Kx (x ∈ G) with multiplication (Kx)(Ky) = Kxy. We want to define a
“natural” function G/K → Imφ. Obvious choice is the function Kx 7→ φ(x)
for x ∈ G. To show this is a function, need to prove:

Claim 1. If Kx = Ky, then φ(x) = φ(y).

To prove this, suppose Kx = Ky. Then xy−1 ∈ K (as x ∈ Kx⇒ x = ky
for some k ∈ K ⇒ xy−1 = k ∈ K ). Hence xy−1 ∈ K = Kerφ, so

φ(xy−1) = e
⇒ φ(x)φ(y−1) = e
⇒ φ(x)φ(y)−1 = e
⇒ φ(x) = φ(y).

By Claim 1, we can define a function α : G/K → Imφ by

α(Kx) = φ(x)

for all x ∈ G.

Claim 2. α is an isomorphism.

Here is a proof of this claim.

(1) α is surjective: for if φ(x) ∈ Imφ then φ(x) = α(Kx).

(2) α is injective:
α(Kx) = α(Ky)

⇒ φ(x) = φ(y)
⇒ φ(x)φ(y)−1 = e
⇒ φ(xy−1) = e,

so xy−1 ∈ Kerφ = K and so Kx = Ky.

(3) Finally
α((Kx)(Ky)) = α(Kxy)

= φ(xy)
= φ(x)φ(y)
= α(Kx)α(Ky).

Hence α is an isomorphism.

This completes the proof that G/K ∼= Imφ. �

Corollary 7.10 If φ : G→ H is a homomorphism, then

|G| = |Kerφ| ∙ |Imφ|.
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One can think of this as the group theoretic version of the rank-nullity
theorem.

Examples

1. Homomorphism sgn : Sn → C2. By 7.9

Sn/Ker(sgn) ∼= Im(sgn),

so
Sn/An ∼= C2.

2. Homomorphism φ : (R,+)→ (C∗,×)

φ(x) = e2πix.

Here
Kerφ =

{
x ∈ R | e2πix = 1

}

= Z,
Imφ =

{
e2πix | x ∈ R

}

= T the unit circle.

So R/Z ∼= T .

3. Is there a surjective homomorphism φ from S3 onto C3? Shown pre-
viously – No.

Here’s a better way to see this: suppose there exist such φ. Then
Imφ = C3, so by 7.9, S3/Kerφ ∼= C3. So Kerφ is a normal subgroup
of S3 of size 2. But S3 has no normal subgroups of size 2 (they are
〈(1 2)〉, 〈(1 3)〉, 〈(2 3)〉).

Given a homomorphism φ : G → H, we know Kerφ C G. Converse
question: Given a normal subgroup NCG, does there exist a homomorphism
with kernel N? Answer is YES:

Proposition 7.11 Let G be a group and N C G. Define H = G/N . Let
φ : G→ H be defined by

φ(x) = Nx

for all x ∈ G. Then φ is a homomorphism and Kerφ = N.
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Proof First, φ(xy) = Nxy = (Nx)(Ny) = φ(x)φ(y), so φ is a homomor-
phism. Also

x ∈ Kerφ⇔ φ(x) = eH ⇔ Nx = N⇔ x ∈ N.

Hence Kerφ = N. �

Example From a previous example, we know
〈
ρ2
〉
=
{
e, ρ2, ρ4

}
CD12. We

showed that D12
〈
ρ2
〉 ∼= C2 × C2. So by 7.11, the function φ(x) =

〈
ρ2
〉
x

(x ∈ D12) is a homomorphism D12 → C2 × C2 which is surjective, with
kernel

〈
ρ2
〉
.

Summary

There is a correspondence

{normal subgroups of G} ↔ {homomorphisms of G} .

For N C G there is a homomorphism φ : G → G/N with Kerφ = N. For a
homomorphism φ, Kerφ is a normal subgroup of G.

Given G, to find all H such that there exist a surjective homomorphism
G→ H:

(1) Find all normal subgroups of G.

(2) The possible H are the factor groups G/N for N CG.

Example: G = S3.

(1) Normal subgroups of G are

〈e〉 , G,A3 = 〈(1 2 3)〉

(cyclic subgroups of size 2 〈(i j)〉 are not normal).

(2) Factor groups:

S3/ 〈e〉 ∼= S3, S3/S3 ∼= C1, S3/A3 ∼= C2
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8 Symmetry groups in 3 dimensions

These are defined similarly to symmetry groups in 2 dimensions, see chapter
2. An isometry of R3 is a bijection f : R3 → R3 such that d(x, y) =
d(f(x), f(y)) for all x, y ∈ R3.

Examples of isometries are: rotation about an axis, reflection in a plane,
translation.

As in 2.1, the set of all isometries of R3, under composition, forms a group
I(R3). For Π ⊆ R3, the symmetry group of Π isG(Π) =

{
g ∈ I(R3) | g(Π) = Π

}
.

There exist many interesting symmetry groups in R3. Some of the most in-
teresting are the symmetry groups of the Platonic solids: tetrahedron, cube,
octahedron, icosahedron, dodecahedron.

Example: The regular tetrahedron

Let Π be regular tetrahedron in R3, and let G = G(Π).

• Rotations in G: Let R be the set of rotations in G. Some elements of
R:

(1) e,

(2) rotations of order 3 fixing one corner: these are

ρ1, ρ
2
1, ρ2, ρ

2
2, ρ3, ρ

2
3, ρ4, ρ

2
4

(where ρi fixes corner i),

(3) rotations of order 2 about an axis joining the mid-points of op-
posite sides

ρ12,34, ρ13,24, ρ14,23.

So |R| ≥ 12. Also |R| ≤ 12: can rotate to get any face i on bottom (4
choices). If i is on the bottom, only 3 possible configurations. Hence
|R| ≤ 4 ∙ 3 = 12. Hence |R| = 12.

Claim 1: R ∼= A4.

To see this, observe that each rotation r ∈ R gives a permutation of
the corners 1, 2, 3, 4, call it πr:

e → πe = identity permutation
ρi, ρ

2
i → all 8 3-cycles in S4 (1 2 3), (1 3 2), . . .

ρ12,34 → (1 2)(3 4)
ρ13,24 → (1 3)(2 4)
ρ14,23 → (1 4)(2 3).
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Notice that {πr | r ∈ R} consists of all the 12 even permutations in
S4, i.e. A4. The map r 7→ πr is an isomorphism R→ A4. So R ∼= A4.

Claim 2: The symmetry group G is S4.

Obviously G contains a reflection σ with corresponding permutation
πσ = (1 2). So G contains

R ∪Rσ.

So |G| ≥ |R| + |Rσ| = 24. On the other hand, each g ∈ G gives a
unique permutation πg ∈ S4, so |G| ≤ |S4| = 24. So |G| = 24 and the
map g 7→ πg is an isomorphism G→ S4.

9 Counting using groups

Consider the following problem. Colour edges of an equilateral triangle with
2 colours R,B. How many distinguishable colourings are there?

Answer: There are 8 colourings altogether:

(1) all the edges red – RRR,

(2) all the edges blue – BBB,

(3) two reds and a blue – RRB,RBR,BRR,

(4) two blues and a red – BBR,BRB,RBB.

Clearly there are 4 distinguishable colourings. Point: Two colourings are
not distinguishable iff there exists a symmetry of the triangle sending one
to the other.

To bring groups into the picture: call C the set of all 8 colorings. So

C = {RRR, . . . , RBB} .

LetG be the symmetry group of the equilateral triangle, D6 =
{
e, ρ, ρ2, σ, ρσ, ρ2σ

}
.

Each element of D6 gives a permutation of C, e.g. ρ gives the permutation
(RRR) (BBB) (RRB RBR BRR) (BBR BRB RBB).

Divide the set C into subsets called orbits of G: two colourings c, d are
in the same orbit if there exists g ∈ D6 sending c to d. The orbits are the
sets (1) - (4) above. The number of distinguishable colourings is equal to
the number of orbits of G.
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General situation

Suppose we have a set S and a group G consisting of some permutations
of S (e.g. S = C, G = D6 above). Partition S into orbits of G, by saying
that two elements s, t ∈ S are in the same orbit iff there exists a g ∈ G such
that g(s) = t. How many orbits are there?

Lemma 9.1 (Burnside’s Counting Lemma) For g ∈ G, define

fix(g) = number of elements of S fixed by g
= |{s ∈ S | g(s) = s}| .

Then

number of orbits of G =
1

|G|

∑

g∈G

fix(g).

I won’t give a proof. Look it up in the recommended book by Fraleigh
if you are interested.

Examples

(1) C = set of 8 colourings of the equilateral triangle. G = D6. Here are
the values of fix(g):

g e ρ ρ2 σ ρσ ρ2σ

fix(g) 8 2 2 4 4 4

By 9.1, number of orbits is 16(8 + 2 + 2 + 4 + 4 + 4) = 4.

(2) 6 beads coloured R, R, W, W, Y, Y are strung on a necklace. How
many distinguishable necklaces are there?

Each necklace is a colouring of a regular hexagon. Two colourings are
indistinguishable if there is a rotation or reflection sending one to the
other (a reflection is achieved by turning the hexagon upside down).
Let D be the set of colourings of the hexagon and G = D12.

g e ρ ρ2 ρ3 ρ4 ρ5

fix(g)
(
6
2

)
×
(
4
2

)
0 0 6 0 0

g σ ρσ ρ2σ ρ3σ ρ4σ ρ5σ

fix(g) 6 6 6 6 6 6
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So by 9.1

number of orbits =
1

12
(90 + 42) = 11.

So the number of distinguishable necklaces is 11.

(3) Make a tetrahedral die by putting 1, 2, 3, 4 on the faces. How many
distinguishable dice are there?

Each die is a colouring (colours 1, 2, 3, 4) of a regular tetrahedron. Two
such colourings are indistinguishable if there exists a rotation of the
tetrahedron sending one to the other. Let E be the set of colourings,
and G = rotation group of tetrahedron (so |G| = 12, G ∼= A4 by
Chapter 8). Here for g ∈ G

fix(g) =

{
24 if g = e,
0 if g 6= e.

So by 9.1, number of orbits is 112(24) = 2. So there are 2 distinguishable
tetrahedral dice.
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Part(B): Linear Algebra

Revision from M1GLA:

Matrices, linear equations; Row operations; echelon form; Gaussian elimina-
tion; Finding inverses; 2×2, 3×3 determinants; eigenvalues and eigenvectors;
diagonalization.

From M1P2:

Vector spaces; subspaces; spanning sets; linear independence; basis, di-
mension; rank, col-rank = row-rank; linear transformations; kernel, image,
rank-nullity theorem; matrix [T ]B of a linear transformation with respect to
a basis B; diagonalization, change of basis .

10 Determinants

In M1GLA, we defined determinants of 2× 2 and 3× 3 matrices. Recall the
definition of 3× 3 determinant:
∣
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣
∣
= a11a22a23−a11a23a32−a12a21a33+a12a23a31+a13a21a32−a13a22a31.

This expression has 6 terms. Each term

(1) is a product of 3 entries, one from each column,

(2) has a sign ±.

Property (1) gives for each term a permutation of {1, 2, 3}, sending i 7→ j if
aij is present.

Term Permutation Sign

a11a22a33 e +
a11a23a32 (2 3) −
a12a21a33 (1 2) −
a12a23a31 (1 2 3) +
a13a21a32 (1 3 2) +
a13a22a31 (1 3) −

Notice:

• the sign is sgn(permutation),
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• all 6 permutations in S3 are present.

So
|A| =

∑

π∈S3

sgn(π) ∙ a1,π(1)a2,π(2)a3,π(3).

Here’s a general definition:

Definition Let A = (aij) be n× n. Then the determinant of A is

det(A) = |A| =
∑

π∈Sn

sgn(π) ∙ a1,π(1)a2,π(2) ∙ ∙ ∙ an,π(n).

Example

For n = 1, A = (a11) and S1 = {e}, so det(A) = a11.

For n = 2, A =

(
a11 a12
a21 a22

)

, S2 = {e, (1 2)}. So |A| = a11a22 − a12a21.

The new definition agrees with M1GLA.

Aim: to prove basic properties of determinants. These are:

(1) to see the effects of row operations on the determinant,

(2) to prove multiplicative property of the determinant:

det(AB) = det(A)det(B).

Basic properties

Let A = (aij) be n× n. Recall the transpose of A is AT = (aji).

Proposition 10.1 |AT | = |A|.

Proof Let AT = (bij), so bij = aji. Then

|AT | =
∑
π∈Sn sgn(π)b1,π(1) ∙ ∙ ∙ bn,π(n)

=
∑
π∈Sn sgn(π)aπ(1),1 ∙ ∙ ∙ aπ(n),n.

Let σ = π−1. Then

aπ(1),1 ∙ ∙ ∙ aπ(n),n = a1,σ(1) ∙ ∙ ∙ an,σ(n).
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Also observe sgn(π) = sgn(σ) by 4.1. So

|AT | =
∑

π∈Sn

sgn(σ) ∙ a1,σ(1) ∙ ∙ ∙ an,σ(n).

As π runs through all permutations in Sn, so does σ = π
−1. Hence |AT | =

|A|. �

So any result about determinants concerning rows will have an analogous
result concerning columns.

Proposition 10.2 Suppose B is obtained from A by swapping two rows (or
two columns). Then |B| = −|A|.

Proof We prove this for columns (follows for rows using 10.1). Say
columns numbered r and s are swapped. Let τ = (r s), 2-cycle in Sn. Then
if B = (bij), bij = ai,τ(j). So

|B| =
∑
π∈Sn sgn(π)b1,π(1) ∙ ∙ ∙ bn,π(n)

=
∑
π∈Sn sgn(π)a1,τπ(1), ∙ ∙ ∙ an,τπ(n).

Now sgn(τπ) = sgn(τ)sgn(π) = −sgn(π) by 4.1. So

|B| =
∑

π∈Sn

−sgn(τπ) ∙ a1,τπ(1), ∙ ∙ ∙ an,τπ(n).

As π runs through all elements of Sn so does τπ. So |B| = −|A|. �

Proposition 10.3 (1) If A has a row (or column) of 0’s then |A| = 0.

(2) If A has two identical rows (or columns) then |A| = 0.

(3) If A is triangular (upper or lower) then |A| = a11a22 ∙ ∙ ∙ ann.

Proof (1) Each term in |A| has an entry from every row, so is 0.

(2) If we swap the identical rows, we get A again, so by 10.2 |A| = −|A|.
Hence |A| = 0.

(3) The only nonzero term in |A| is a11a22 ∙ ∙ ∙ ann. �

For example, by (3), |I| = 1.

We can now find the effect of doing row operations on |A|.
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Theorem 10.4 Suppose B is obtained from A by using an elementary row
operation.

(1) If two rows are swapped to get B, then |B| = −|A|.

(2) If a row of A is multiplied by a nonzero scalar k to get B, then
|B| = k|A|.

(3) If a scalar multiple of one row of A is added to another row to get
B, then |B| = |A|.

(4) If |A| = 0, then |B| = 0 and if |A| 6= 0 then |B| 6= 0.

Proof (1) is 10.2.

(2) Every term in |A| has exactly one entry from the row in question, so
is multiplied by k. Hence |B| = k|A|.

(3) Suppose c× row k is added to row j. So

|B| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 ∙ ∙ ∙ a1n
...

aji + cak1 ∙ ∙ ∙ ajn + cakn
...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 ∙ ∙ ∙ a1n
...

aji ∙ ∙ ∙ ajn
...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+ c

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 ∙ ∙ ∙ a1n
...

ak1 ∙ ∙ ∙ akn
...

ak1 ∙ ∙ ∙ akn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= |A|+ 0

by 10.3(2). Hence |B| = |A|.

(4) is clear from (1), (2), (3). �

Expansions of determinants

As in M1GLA, recall that if A = (aij) is n× n, the ij-minor Aij is the
(n− 1)× (n− 1) matrix obtained by deleting row i and column j from A.

Proposition 10.5 (Laplace expansion by rows) Let A be n× n.

(1) Expansion by 1st row:

|A| = a11|A11| − a12|A12|+ a13|A13| − ∙ ∙ ∙+ (−1)
n−1a1n|A1n|.
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(2) Expansion by ith row:

(−1)i−1|A| = ai1|Ai1| − ai2|Ai2|+ ai3|Ai3| − ∙ ∙ ∙+ (−1)
n−1ain|Ain|.

Note that using 10.1 we can get similar expansions by columns.

Proof (1) For the first row: Consider

|A| =
∑

π∈Sn

(sgnπ)a1,π(1) ∙ ∙ ∙ an,π(n).

Terms with a11 are
∑

π∈Sn,π(1)=1

sgn(n)a11a2,π(2) ∙ ∙ ∙ an,π(n) = a11|A11|.

To calculate terms with a12, swap columns 1 and 2 of A to get

B =








a12 a11 a13 ∙ ∙ ∙
a22 a21 a23 ∙ ∙ ∙
...

...
...

an2 an1 an3 ∙ ∙ ∙







.

Then |B| = −|A| by 10.2. Terms in |B| with a12 add to a12|A12. So terms
in |A| with a12 add to −a12|A12|. For terms with a13, swap columns 2 and
3 of A, then swap columns 1 and 2 to get

B′ =








a13 a11 a12 ∙ ∙ ∙
a23 a21 a22 ∙ ∙ ∙
...

...
...

an3 an1 an2 ∙ ∙ ∙







.

Then |B′| = |A| and a13 terms add to a13|A13|.

Continuing like this, see that |A| = a11|A11| − a12|A12 + ∙ ∙ ∙ which is
expansion by the first row.

(2) For expansion by ith row, do i− 1 row swaps in A to get

B′′ =








ai1 ∙ ∙ ∙ ain
a11 ∙ ∙ ∙ a1n
a21 ∙ ∙ ∙ a2n

...







.
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Then |B′′| = (−1)i−1|A|. Now use expansion of B′′ by 1st row. �

Major properties of determinants

Two major results. First was proved in M1GLA for 2×2 and 3×3 cases:

Theorem 10.6 Let A be n× n. The following statements are equivalent.

(1) |A| 6= 0.

(2) A is invertible.

(3) The system Ax = 0 (x ∈ Rn) has only solution x = 0.

(4) A can be reduced to In by elementary row operations.

Proof We proved (2)⇔ (3)⇔ (4) in M1GLA (7.5).

(1) ⇒ (4): Suppose |A| 6= 0. Reduce A to echelon form A′ by elementary
row operations. Then |A′| 6= 0 by 10.4(4). So A′ does not have a zero
row. Therefore A′ is upper triangular with 1’s on diagonal and hence can
be reduced further to In by row operations.

(4) ⇒ (1): Suppose A can be reduced to In by row operations. We know
that |In| = 1. So |A| 6= 0 by 10.4(4). �

Corollary 10.7 Let A be n×n. If the system Ax = 0 has a nonzero solution
x 6= 0 then |A| = 0.

Second major result on determinants:

Theorem 10.8 If A,B are n× n then

det(AB) = det(A)det(B).

To prove this need to study

Elementary matrices
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These are n× n of the following types:

Ai(r) =















1
. . .

1
r

1
. . .

1















r 6= 0,

Bij =
















1
. . .

1
. . .

1
. . .

1
















In with rows i, j swapped,

Cij(r) =
















1
. . .

1 r
. . .

1
. . .

1
















. r is the ij-th entry, i 6= j.

The elementary matrices correspond to elementary row operations:

Proposition 10.9 Let A be n × n. An elementary row operation on A
changes it to EA, where E is an elementary matrix.

Proof Let the rows of A be v1, . . . , vn.

(1) Row operation vi 7→ rvi sends A to Ai(r)A.

(2) Row operation vi ↔ vj sends A to BijA.

(3) Row operation vi 7→ vi + rvj sends A to Cij(r)A. �

Proposition 10.10 (1) The determinant of an elementary matrix is nonzero
and

|Ai(r)| = r, |Bij | = −1, |Cij(r)| = 1.
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(2) The inverse of an elementary matrix is also an elementary matrix:

Ai(r)
−1 = Ai(r

−1), B−1ij = Bij , Cij(r)
−1 = Cij(−r).

Proposition 10.11 Let A be n × n, and suppose A is invertible. Then A
is equal to a product of elementary matrices, i.e. A = E1 ∙ ∙ ∙Ek where each
Ei is an elementary matrix.

Proof By 10.6, A can be reduced to I by elementary row operations.
By 10.9 first row operations changes A to E1A with E1 elementary matrix.
Second changes E1A to E2E1A, E2 elementary matrix . . . and so on, until
we end up with I. Hence

I = EkEk−1 ∙ ∙ ∙E1A,

where each Ei is elementary. Multiply both sides on left by E
−1
1 ∙ ∙ ∙E

−1
k−1E

−1
k

to get
E−11 ∙ ∙ ∙E

−1
k = A.

Each E−1i is elementary by 10.10(2). �

Towards Theorem 10.8:

Proposition 10.12 If E is an elementary n × n matrix, and A is n × n,
then det(EA) = det(E)det(A).

Proof Let the rows of A be v1, . . . , vn.

(1) If E = Ai(r), then EA has rows v1, . . . , rvi, . . . vn, so |EA| = r|A| by
10.4 and therefore |EA| = |E||A| by 10.10.

(2) If E = Bij , then EA is obtained by swapping rows i and j of A, so
|EA| = −|A| by 10.4 and so |EA| = |E||A| by 10.10.

(3) If E = Cij(r) then EA has rows v1, . . . , vi + rvj , . . . vn, so |EA| =
|E||A| by 10.4 and 10.10. �

Corollary 10.13 If A = E1 . . . Ek, where each Ei is elementary, then |A| =
|E1| ∙ ∙ ∙ |Ek|.

Proof
|A| = |E1 ∙ ∙ ∙Ek|

= |E1||E2 ∙ ∙ ∙Ek| by 10.12
. . .

= |E1||E2| ∙ ∙ ∙ |Ek|.
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Proof of Theorem 10.8

(1) If |A| = 0 or |B| = 0, then |AB| = 0 by Sheet 6, Q7.

(2) Now assume that |A| 6= 0 and |B| 6= 0. Then A,B are invertible by
10.6. So by 10.11,

A = E1 ∙ ∙ ∙Ek, B = F1 ∙ ∙ ∙Fl

where all Ei, Fi are elementary matrices. By 10.13,

|A| = |E1| ∙ ∙ ∙ |Ek|, |B| = |F1| ∙ ∙ ∙ |Fk|.

Also AB = E1 ∙ ∙ ∙EkF1 ∙ ∙ ∙Fl, so by 10.13

|AB| = |E1| ∙ ∙ ∙ |En||F1| ∙ ∙ ∙ |Fk| = |A||B|.

Immediate consequence:

Proposition 10.14 Let P be an invertible n× n matrix.

(1) det(P−1) = 1
det(P ) ,

(2) det(P−1AP ) = det(A) for all n× n matrices A.

Proof (1) det(P )det(P−1) = detPP−1 = detI = 1 by 10.8.

(2) det(P−1AP ) = det(P−1)detAdetP = detA by 10.8 and (1). �

11 Matrices and linear transformations

Recall from M1P2:

Let V be a finite dimensional vector space and T : V → V a linear transfor-
mation. If B = {v1, . . . , vn} is a basis of V , write

T (v1) = a11v1 + . . .+ an1vn,
...

T (vn) = a1nv1 + . . .+ annvn.

The matrix of T with respect to B is

[T ]B =






a11 ∙ ∙ ∙ a1n
...

...
an1 ∙ ∙ ∙ ann




 .

A result from M1P2:
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Proposition 11.1 Let S : V → V and T : V → V be linear transformations
and let B be a basis of V . Then

[ST ]B = [S]B[T ]B,

where ST is the composition of S and T .

Consequences of 11.1:

As in 11.1, let V be n-dimensional over F = R or C, basis B. The map
T 7→ [T ]B gives a correspondence

{linear transformations V → V } ↔ {n× n matrices over F} .

This has many nice properties:

1. If [T ]B = A then [T
2]B = A

2 and similarly
[
T k
]
B
= Ak.

For a polynomial q(x) = arx
r + ∙ ∙ ∙+ a1x+ a0 (ai ∈ C), define

q(A) = arA
r + ∙ ∙ ∙+ a1A+ a0I

and
q(T ) = arT

r + ∙ ∙ ∙+ a1T + a01V

where 1V : V → V is the identity map. Then 11.1 implies that

[q(T )]B = q(A).

Example Let V = polynomials of degree ≤ 2, T (p(x)) = p′(x). Then
(T 2 − T )(p(x)) = p′′(x)− p′(x) and

[T 2 − T ]B =




0 1 0
0 0 2
0 0 0





2

−




0 1 0
0 0 2
0 0 0



 =




0 −1 2
0 0 −2
0 0 0



 .

2. Define GL(V ) to be the set of all invertible linear transformations
V → V . Then GL(V ) is a group under composition, and T 7→ [T ]B is an
isomorphism from GL(V ) to GL(n, F ) (recall that GL(n, F ) is the group of
all n× n invertible matrices under matrix multiplication).

Change of basis
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Let V be n-dimensional, with bases E = {e1, . . . , en}, F = {f1, . . . , fn}.
Write

f1 = p11e1 + ∙ ∙ ∙+ pn1en,
...

fn = p1ne1 + ∙ ∙ ∙+ pnnen.

and define P to be the n× n matrix (pij). Recall from M1P2 that P is the
change of basis matrix from E to F . Here’s another basic result from M1P2:

Proposition 11.2 (1) P is invertible.

(2) If T : V → V is a linear transformation, then [T ]F = P−1[T ]EP .

Determinant of a linear transformation

Definition Let A,B be n× n matrices. We say A is similar to B if there
exists an invertible n× n matrix P such that B = P−1AP .

Note that the relation ∼ defined by

A ∼ B ⇔ A is similar to B

is an equivalence relation (Sheet 7, Q6).

Proposition 11.3 (1) If A,B are similar then |A| = |B|.

(2) Let T : V → V be linear transformations and let E,F be two bases
of V . Then the matrices [T ]E and [T ]F are similar.

Proof (1) is 10.14, and (2) is 12.2(2). �

Definition Let T : V → V be a linear transformation. By 11.3, for any
two bases E,F of V , the matrices [T ]E and [T ]F have same determinant.
Call det[T ]E the determinant of T , written detT .

Example Let V = polynomials of degree ≤ 2 and T (p(x)) = p(2x + 1).
Take B =

{
1, x, x2

}
, so

[T ]B =




1 1 1
0 2 4
0 0 4



 .

So detT = 8.
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12 Characteristic polynomials

Recall from M1P2: let T : V → V be a linear transformation. We say v ∈ V
is an eigenvector of T if

(1) v 6= 0, and

(2) T (v) = λv where λ is a scalar.

The scalar λ is an eigenvalue of T .

Definition The characteristic polynomial of T : V → V is the polynomial
det(xI − T ), where I : V → V is the identity linear transformation.

By the definition of determinant, this polynomial is equal to det(xI −
[T ]B) for any basis B.

Example V = polynomials of degree ≤ 2, T (p(x)) = p(1 − x), B ={
1, x, x2

}
. The characteristic polynomial of T is

det



xI −




1 1
0 −1 −2
0 0 1







 = det




x− 1 −1 −1
0 x+ 1 2
0 0 x− 1



 = (x−1)2(x+1).

From M1P2:

Proposition 12.1 (1) The eigenvalues of T are the roots of the character-
istic polynomial of T .

(2) If λ is an eigenvalue of T , the eigenvectors corresponding to λ are
the nonzero vectors in

Eλ = {v ∈ V | (λI − T )(v) = 0} = ker(λI − T ).

(3) The matrix [T ]B is a diagonal matrix iff B consists of eigenvectors
of T .

Note that Eλ = ker(λI − T ) is a subspace of V , called the λ-eigenspace
of T .

Example In previous example, eigenvalues of T are 1,−1. Eigenspace E1
is ker(I − T ). Solve




0 −1 −1 0
0 2 2 0
0 0 0 0



 .
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Solutions are vectors




a

b

−b



. So E1 =
{
a+ bx− bx2 | a, b ∈ F

}
.

Eigenspace E−1. Solve




2 −1 −1 0
0 0 2 0
0 0 −2 0



 .

Solutions are vectors




c

−2c
0



. So E−1 = {c− 2cx | c ∈ F}.

Basis of E1 is 1, x− x2. Basis of E−1 is 1− 2x. Putting these together,
get basis

B =
{
1, x− x2, 1− 2x

}

of V consisting of eigenvectors of T , and

[T ]B =




1 0 0
0 1 0
0 0 −1



 .

Proposition 12.2 Let V a finite-dimensional vector space over C. Let T :
V → V be a linear transformation. Then T has an eigenvalue λ ∈ C.

Proof The characteristic polynomial of T has a root λ ∈ C by the
Fundamental theorem of Algebra. �

Note that Proposition 12.2 is not necessarily true for vector spaces over
R. For example T : R2 → R2 defined by T (x1, x2) = (x2,−x1) has charac-
teristic polynomial x2 + 1, which has no real roots.

Diagonalisation

Basic question is: How to tell if there exists a basis B such that [T ]B is
diagonal? Useful result:

Proposition 12.3 Let T : V → V be a linear transformation. Suppose
v1, . . . , vk are eigenvectors of T corresponding to distinct eigenvalues λ1, . . . , λk.
Then v1, . . . , vk are linearly independent.
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Proof By induction on k. Let P (k) be the statement of the proposition.
P (1) is true, since v1 6= 0, so v1 is linearly independent. Assume P (k − 1)
is true, so v1, . . . , vk−1 are linearly independent. We show v1, . . . , vk are
linearly independent. Suppose

r1v1 + ∙ ∙ ∙+ rkvk = 0. (34)

Apply T to get
λ1r1v1 + ∙ ∙ ∙+ λkrkvk = 0 (35)

Then (35)-λk×(34) gives

r1(λ1 − λk)v1 + ∙ ∙ ∙+ rk−1(λk−1 − λk)vk−1 = 0.

As v1, . . . , vk−1 are linearly independent, all coefficients are 0. So

r1(λ1 − λk) = . . . = rk−1(λk−1 − λk) = 0.

As the λi are distinct, λ1 − λk, . . . , λk−1 − λk 6= 0. Hence

r1 = . . . = rk−1 = 0.

Then (34) gives rkvk = 0, so rk = 0. Hence v1, . . . , vk are linearly indepen-
dent, completing the proof by induction. �

Corollary 12.4 Let dimV = n and T : V → V be a linear transformation.
Suppose the characteristic polynomial of T has n distinct roots. Then V has
a basis B consisting of eigenvectors of T (i.e [T ]B is diagonal).

Proof Let λ1, . . . , λn be the (distinct) roots, so these are the eigenvalues
of T . Let v1, . . . , vn be corresponding eigenvectors. By 12.3, v1, . . . , vn are
linearly independent, hence form a basis of V since dimV = n. �

Example Let

A =








λ1
0 λ2
...

. . .

0 ∙ ∙ ∙ 0 λn








be triangular, with diagonal entries λ1, . . . , λn, all distinct. The character-
istic polynomial of A is

|xI −A| =
n∏

i=1

(x− λi)
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which has roots λ1, . . . , λn. Hence by 12.4, A can be diagonalized, i.e. there
exists P such that P−1AP is diagonal.

Note that this is not necessarily true if the diagonal entries are not

distinct, e.g.

(
1 1
0 1

)

cannot be diagonalized.

Algebraic and geometric multiplicities

Let T : V → V be a linear transformation with characteristic polynomial
p(x) = det(xI − T ). Let λ be an eigenvalue of T , i.e. a root of p(x). Write

p(x) = (x− λ)a(λ)q(x),

where λ is not a root of q(x). Call a(λ) the algebraic multiplicity of λ.

The geometric multiplicity of λ is defined to be

g(λ) = dimEλ,

where Eλ = ker(λI − T ), the λ-eigenspace of T .

We adopt similar definitions for n× n matrices.

Example For A =

(
1 1
0 2

)

, we have

a(1) = g(1) = 1, a(2) = g(2) = 1.

And for B =

(
1 1
0 1

)

, we have

a(1) = 2, g(1) = 1.

Proposition 12.5 If λ is an eigenvalue of T : V → V , then g(λ) ≤ a(λ).

Proof Let r = g(λ) = dimEλ and let v1, . . . , vr be a basis of Eλ. Extend
to a basis of V :

B = {v1, . . . , vr, w1, . . . , ws} .

We work out [T ]B:

T (v1) = λv1,
...

T (vr) = λvr,

T (w1) = a11v1 + ∙ ∙ ∙+ ar1vr + b11w1 + ∙ ∙ ∙+ bs1ws,
...

T (ws) = a1sv1 + ∙ ∙ ∙+ arsvr + b1sw1 + ∙ ∙ ∙+ bssws.
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So

[T ]B =



















λ 0 ∙ ∙ ∙ 0 a11 ∙ ∙ ∙ a1s

0 λ ∙ ∙ ∙ 0
...

...
...
...
. . .

...
...

0 0 ∙ ∙ ∙ λ ar1 ∙ ∙ ∙ ars
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 b11 ∙ ∙ ∙ b1s
...

...
...

...
...

...
...

...
0 ∙ ∙ ∙ ∙ ∙ ∙ 0 bs1 ∙ ∙ ∙ bss



















.

Clearly the characteristic polynomial of this is

p(x) = det

(
(x− λ)Ir −A

0 xIs −B

)

.

By Sheet 7 Q5, this is

p(x) = det((x− λ)Ir) det(xIs −B) = (x− λ)
rq(x).

Hence the algebraic multiplicity a(λ) ≥ r = g(λ). �

Here is a basic criterion for diagonalisation:

Theorem 12.6 Let dimV = n, T : V → V be a linear transformation, let
λ1, . . . , λr be the distinct eigenvalues of T , and the characteristic polynomial
of T be

p(x) =
r∏

i=1

(x− λi)
a(λi)

(so
∑r
i=1 a(λi) = n). The following statements are equivalent:

(1) V has a basis B consiting of eigenvectors of T (i.e. [T ]B is diagonal).

(2)
∑r
i=1 g(λi) =

∑r
i=1 dimEλi = n.

(3) g(λi) = a(λi) for all i.

Proof To prove(1)⇒ (2), (3): Suppose (1) holds. Each vector in B is in
some Eλi , so

r∑

i=1

dimEλi ≥ |B| = n.
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By 12.5
r∑

i=1

dimEλi =
r∑

i=1

g(λi) ≤
r∑

i=1

a(λi) = n.

Hence
∑r
i=1 dimEλi = n and g(λi) = a(λi) for all i.

Evidently (2) ⇔ (3), so it is enough to show that (2) ⇒ (1). Suppose∑r
i=1 dimEλi = n. Let Bi be a basis of Eλi and let B =

⋃r
i=1Bi, so |B| = n

(the Bi’s are disjoint as they consist of eigenvectors for different eigenvalues).
We claim B is a basis of V , hence (1) holds:
It’s enough to show that B is linearly independent (since |B| = n = dimV ).
Suppose there is a linear relation

∑

v∈B1

αvv + ∙ ∙ ∙+
∑

z∈Br

αzz = 0.

Write
v1 =

∑
v∈B1 αvv,

...
vr =

∑
z∈Br αzz,

so vi ∈ Eλi and v1 + ∙ ∙ ∙ + vr = 0. As λ1, . . . , λr are distinct, the set of
nonzero vi’s is linearly independent by 12.3. Hence vi = 0 for all i. So

vi =
∑

v∈Bi

αvv = 0.

As Bi is linearly independent (basis of Eλi) this forces αv = 0 for all v ∈ Bi.
This completes the proof that B is linearly independent, hence a basis of V .
�

Using 12.6 we get an algorithm to check whether a given n × n matrix
or linear transformation is diagonalizable:

1. Find the characteristic polynomial, factorise it as

∏
(x− λi)

a(λi).

2. Calculate each g(λi) = dimEλi .

3. If g(λi) = a(λi) for all i, YES.
If g(λi) < a(λi) for some i, NO.
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Example Let A =




−3 1 −1
−7 5 −1
−6 6 −2



. Check that

(1) Characteristic polynomial is (x+ 2)2(x− 4).

(2) For eigenvalue 4: a(4) = 1, g(4) = 1 (as it is ≤ a(4)).
For eigenvalue −2: a(−2) = 2, g(−2) = dimE−2 = 1.

So A is not diagonalizable by 12.6.

13 The Cayley-Hamilton theorem

Recall that if T : V → V is a linear transformation and p(x) = akxk + ∙ ∙ ∙+
a1x+ a0 is a polynomial, then p(T ) : V → V is defined by

p(T ) = akT
k + ak−1T

k + ∙ ∙ ∙+ a1T + a01V .

Likewise if A is n× n matrix,

p(A) = akA
k + ∙ ∙ ∙ a1A+ a0I.

Theorem 13.1 (Cayley-Hamilton Theorem) Let V be finite-dimensional
vector space, and T : V → V a linear transformation with characteristic
polynomial p(x). Then p(T ) = 0, the zero linear transformation.

Proof later.

Corollary 13.2 If A is a n×n matrix with characteristic polynomial p(x),
then p(A) = 0.

This can easily be deduced from Theorem 13.1: simply apply 13.1 to the
linear transformation T : Fn → Fn (F = R or C) given by T (v) = Av.

Examples 1. 13.2 is obvious for diagonal matrices

A =






λ1
. . .

λn




 .
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This is because the λi are the roots of p(x), so

p(A) =






p(λ1)
. . .

p(λn)




 = 0.

Corollary 13.2 is also quite easy to prove for diagonalisable matrices (Sheet
8 Q3).

2. For 2× 2 matrices A =

(
a b

c d

)

, the characteristic polynomial is

p(x) =

∣
∣
∣
∣
x− a −b
−c x− d

∣
∣
∣
∣ = x

2 − (a+ d)x+ ad− bc.

So 13.2 tells us that

A2 − (a+ d)A+ (ad− bc)I = 0.

Could verify this directly. For 3 × 3, . . . , n× n need a better idea.

Proof of Cayley-Hamilton

Let T : V → V be a linear transformation with characteristic polynomial
p(x).

Aim: for v ∈ V , show that p(T )(v) = 0.

Strategy: Study the subspace

vT = Span(v, T (v), T 2(v), . . .)
= Span(T i(v) | i ≥ 0).

Definition A subspaceW of V is T -invariant if T (W ) ⊆W , i.e. T (w) ∈W
for all w ∈W .

Proposition 13.3 Pick v ∈ V and let

W = vT = Span(T i(v) | i ≥ 0).

Then W is T -invariant.

Proof Let w ∈W , and write

w = a1T
i1(v) + ∙ ∙ ∙+ arT

ir(v).
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Then
T (w) = a1T

i1+1(v) + ∙ ∙ ∙+ arT
ir+1(v),

so T (w) ∈W . �

Example V = polynomials of deg ≤ 2, T (p(x)) = p(x+ 1). Then

xT = Span(x, T (x), T 2(x), . . .)
= Span(x, x+ 1) = subspace of polynomials of deg ≤ 1.

Clearly this is T -invariant.

Definition Let W be a T -invariant subspace of V . Define TW : W → W
by

TW (w) = T (w)

for all w ∈ W . Then TW is a linear transformation, the restriction of T to
W .

Proposition 13.4 If W is a T -invariant subspace of V , then the charac-
teristic polynomial of TW divides the characteristic polynomial of T .

Proof Let
BW = {w1, . . . , wk}

be a basis of W and extend it to a basis

B = {w1, . . . , wk, x1, . . . , xl}

of V . As W is T -invariant,

T (w1) = a11w1 + ∙ ∙ ∙+ ak1wk,
...

T (wk) = a1kw1 + ∙ ∙ ∙+ akkwk.

Then

[TW ]BW =






a11 ∙ ∙ ∙ a1k
...

...
ak1 ∙ ∙ ∙ akk




 = A

and

[T ]B =

(
A X

0 Y

)

.
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The characteristic polynomial of TW is pW (x) = det(xIk − A), and charac-
teristic polynomial of T is

p(x) = det

(
xIk −A −X
0 xIl − Y

)

= det(xIk −A) ∙ det(xIl − Y )
= pW (x) ∙ q(x).

So pW (x) divides p(x). �

Example V = polynomials of deg ≤ 2, T (p(x)) = p(x + 1), W = xT =
Span (x, x+ 1). Take basis BW = {1, x}, B =

{
1, x, x2

}
. Then

[T ]BW =

(
1 1
0 1

)

,

[T ]B =




1 1 1
0 1 2
0 0 1



 .

Characteristic polynomial of TW is (x− 1)2, characteristic polynomial of T
is (x− 1)3.

Proposition 13.5 Let T : V → V be a linear transformation. Let v ∈ V ,
v 6= 0, and

W = vT = Span
(
T i(v) | i ≥ 0

)
.

Let k = dimW . Then
{
v, T (v), T 2(v), . . . , T k−1(v)

}

is a basis of W .

Proof We show that
{
v, T (v), . . . , T k−1(v)

}
is linearly independent,

hence a basis ofW . Let j be the largest integer such that the set
{
v, T (v), . . . , T j−1(v)

}

is linearly independent. So 1 ≤ j ≤ k. Aim to show that j = k. Let

S =
{
v, T (v), . . . , T j−1(v)

}

and
X = Span(S).

Then X ⊆W and dimX = j. By the choice of j, the set
{
v, T (v), . . . , T j−1(v), T j(v)

}
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is linearly dependent. This implies that T j(v) ∈ Span(S) = X. Say

T j(v) = b0v + b1T (v) + ∙ ∙ ∙+ bj−1T
j−1(v).

So
T j+1(v) = b0T (v) + b1T

2(v) + ∙ ∙ ∙+ bj−1T
j(v) ∈ X.

Similarly T j+2(v) ∈ X, T j+3(v) ∈ X and so on. Hence T i(v) ∈ X for all
i ≥ 0. This implies

W = Span(T i(v) | i ≥ 0) ⊆ X.

As X ⊆ W this means X = W , so j = dimX = dimW = k. Hence{
v, T (v), . . . , T k−1(v)

}
is linearly independent, as required. �

Proposition 13.6 Let T : V → V , let v ∈ V andW = vT = Span
(
T i(v) | i ≥ 0

)
,

with basis BW =
{
v, T (v), . . . , T k−1(v)

}
as in 13.5. Then

(1) there exist scalars ai such that

a0v + a1T (v) + ∙ ∙ ∙+ ak−1T
k−1(v) + T k(v) = 0,

(2) the characteristic polynomial of TW is

pW (x) = x
k + ak−1x

k−1 + ∙ ∙ ∙+ a1x+ a0,

(3)] pW (T )(v) = 0.

Proof

(1) is clear, since T k(v) ∈W and BW is a basis of W .

(2) Clearly

[TW ]BW =










0 0 ∙ ∙ ∙ 0 −a0
1 0 ∙ ∙ ∙ 0 −a1
0 1 ∙ ∙ ∙ 0 −a2
...
...
. . .

...
...

0 0 ∙ ∙ ∙ 1 −ak−1










(for the last column T (T k−1(v)) = T k(v) = −a0v−a1T (v)−∙ ∙ ∙−ak−1T k−1(v)).
By Sheet 8 Q4, the characteristic polynomial of this matrix is

pW (x) = x
k + ak−1x

k−1 + ∙ ∙ ∙+ a0.
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(3) This is clear from (1) and (2). �

Completion of the proof of Cayley-Hamilton 13.1

We have T : V → V with characteristic polynomial p(x). Let v ∈ V , let
W = vT with basis

{
v, T (v), . . . , T k−1(v)

}
. Let pW (x) = x

k + ak−1x
k−1 +

∙ ∙ ∙+ a0 to be the characteristic polynomial of TW . By 13.6(3),

pW (T )(v) = 0.

By 13.4, pW (x) divides p(x), say p(x) = q(x)pW (x), so p(T ) = q(T )pW (T ).
Then

p(T )(v) = (q(T )pW (T ))(v)
= q(T )(pW (T )(v))
= q(T )(0) = 0.

Thus p(T )(v) = 0 for all v ∈ V , which means that p(T ) = 0. This completes
the proof.

14 Invariants of matrices

Recall that two n × n matrices A,B are similar if there is an invertible
matrix P such that B = P−1AP . Similar matrices share many common
properties:

Proposition 14.1 If A,B are similar n× n matrices, they have

(i) the same characteristic polynomial

(ii) the same eigenvalues and algebraic multiplicities

(iii) the same geometric multiplicities

(iv) the same determinant

(v) the same rank and nullity

(vi) the same trace, where trace(A) =
∑
aii, the sum of the diagonal

entries.

Proof (i) is Sheet 8 Q2, and (ii) follows from (i).

(iii) Let V = Fn (where F = R or C), and define T : V → V by
T (v) = Av. Choose bases E and F of V such that [T ]E = A and [T ]F = B
(i.e. take E to be the standard basis, and F the basis with P as its change
of basis matrix from E). Then for any evalue λ, the dimension of the λ-
eigenspace of A or B is equal to dimker(T − λI). Hence (iii).

61



(iv) is 10.14.

(v) The nullity of A is the dimension of the 0-eigenspace, so (v) follows
from (iii).

(vi) The char poly of A is

det(xI −A) = xn − xn−1(a11 + ∙ ∙ ∙+ ann) + ∙ ∙ ∙

so the coefficient of xn−1 is −trace(A). Hence trace(A) = trace(B) by (i) �

We summarise 14.1 by saying that the char poly, eigenvalues, geometric
mults, trace. etc. of a matrix A are quantities which are invariant under
similarity.

Note however that there properties do not determine A: there are many
pairs of non-similar matrices which have the same char poly, determinant,
trace, etc. Here’s an example:

Example Let

A =







1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1





 , B =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1





 .

Then A,B have the same char poly (x− 1)4, the same geom mult g(1) = 2,
the same determinant 1, the same rank 4, the same trace 4. Yet A and B
are not similar (see the next section to justify this).

Aim: to find invariants of a matrix A which are sufficient to determine
A up to similarity. Will do this in the next section.

15 The Jordan Canonical Form

Definition Let λ ∈ C and define the n× n matrix

Jn(λ) =











λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0

. . .

0 0 0 . . . λ 1
0 0 0 . . . 0 λ











Such a matrix is called a Jordan block.
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For example

J2(5) =

(
5 1
0 5

)

, J3(0) =




0 1 0
0 0 1
0 0 0



 , J1(λ) = (λ).

Proposition 15.1 Let J = Jn(λ).

(1) The char poly of J is (x− λ)n.

(2) λ is the only eigenvalue of J : its algebraic mult is n and its geometric
mult is 1.

(3) J − λI = Jn(0), and multiplication by J − λI sends the standard
basis vectors

en → en−1 → ∙ ∙ ∙ → e2 → e1 → 0.

(4) (J − λI)n = 0, and for i < n, (J − λI)i sends en → en−i, en−1 →
en−i−1 and so on.

The proof is routine.

Block diagonal matrices

If A1, . . . , Ak are square matrices, where Ai is ni×ni, we define the block
diagonal matrix

A1 ⊕A2 ⊕ ∙ ∙ ∙ ⊕ Ak =







A1 0 . . . 0
0 A2 . . . 0

. . .

0 0 . . . Ak







This is n× n, where n =
∑
ni.

For example, if A =

(
2 0
−1 1

)

and B = (3), then

A⊕B =




2 0 0
−1 1 0
0 0 3



 .

Proposition 15.2 Let A = A1 ⊕ ∙ ∙ ∙ ⊕ Ak and let pi(x) be the char poly of
Ai.

(1) The char poly of A is
∏k
1 pi(x).

(2) The set of eigenvalues of A is the union of the set of eigenvalues of
the Ai’s.
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(3) For any polynomial q(x),

q(A) = q(A1)⊕ ∙ ∙ ∙ ⊕ q(Ak).

(4) For any eigenvalue λ of A, its geometric mult for A is the sum of its
geometric mults for the Ai, i.e. dimEλ(A) =

∑
dimEλ(Ai).

Proof Parts (1)-(3) are clear, and (4) is Sheet 9, Q3.

Here is the main theorem of this section, indeed one of the main theorems
in the whole of linear algebra.

Theorem 15.3 (Jordan Canonical Form) Let A be an n×n matrix over
C. Then A is similar to a matrix of the form

Jn1(λ1)⊕ Jn2(λ2)⊕ ∙ ∙ ∙ ⊕ Jnk(λk)

where
∑
ni = n (note that the evalues λi are not necessarily distinct). This

is called the Jordan canonical form (JCF) of A, and is unique, apart
from changing the order of the Jordan blocks.

Proof later.

Here are a few examples of JCFs:

J2(1)⊕ J2(1) =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1





 , J3(1)⊕ J1(1) =







1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1





 ,

(the theorem says these are not similar – see the end of the last section),

J1(0)⊕ J2(−i) =




0 0 0
0 −i 1
0 0 −i



 .

Notice that the only diagonal JCF matrices are of the form J1(λ1) ⊕
∙ ∙ ∙ ⊕ J1(λk) – so in some sense “most” matrices are not diagonalisable.

Notice also that a JCF matrix is upper triangular, so one consequence
of the theorem is that every n × n matrix over C can be “triangularised”,
i.e. is similar to a triangular matrix.
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At this point I have become somewhat cheesed off with typing all these
notes, so I am going to stop here and tell you to rely on the excellent notes
you wrote in the lectures. I have put some notes on the proof of the JCF
theorem on the website, so you can’t complain too much.
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