M2PM2 Algebra II Problem Sheet 9

Assessed work: there will be a test at the class on Tuesday December 16, 4.00. The test will consist of one surprise question and two of the starred questions from this sheet.

1. Suppose that A and B are $n \times n$ matrices which are similar.
(i) Prove that A^{2} is similar to B^{2}.
(ii) Prove that for any polynomial $f(x)$, the matrices $f(A)$ and $f(B)$ are similar.

2*. Let A be an arbitrary $n \times n$ matrix. Which of the following quantities are invariant under similarity (i.e. are the same for any matrix which is similar to A) ? Give brief justifications for your answers.
(i) $\operatorname{rank}\left(A^{3}-I\right)$
(ii) $\operatorname{trace}\left(A+A^{5}\right)$
(iii) $c_{1}(A)$, the sum of the entries in the first column of A
(iv) $\operatorname{rank}\left(A-A^{T}\right)$
(v) $\operatorname{trace}\left(2 A-A^{T}\right)$.
3. Suppose that λ is an eigenvalue of a block-diagonal matrix $A=A_{1} \oplus \cdots \oplus A_{k}$. Prove that the geometric multiplicity of λ for A is equal to the sum of its geometric multiplicities for each A_{i}. (In other words prove that $\operatorname{dim} E_{\lambda}(A)=\sum_{1}^{k} \operatorname{dim} E_{\lambda}\left(A_{i}\right)$, where $E_{\lambda}(A)$ and $E_{\lambda}\left(A_{i}\right)$ are the λ-eigenspaces of A and A_{i}.)

4*. (i) Write down all the possible Jordan Canonical Forms having characteristic polynomial $x(x+1+i)^{2}(x-3)^{3}$.
(ii) Calculate the number of non-similar Jordan Canonical Forms having characteristic polynomial $x^{3}(x-1)^{6}$.

5*. Find the JCFs of the following matrices:

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 1 \\
-1 & 0 & 3
\end{array}\right), \\
& \left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{cccccc}
-1 & 0 & 2 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & i & 2 \\
0 & 0 & 0 & 0 & 0 & i
\end{array}\right)
\end{aligned}
$$

6. Let $J_{n}(\lambda)$ be a Jordan block. Prove that the matrix $J=J_{n}(\lambda)-\lambda I$ is similar to its transpose. (Hint (if needed): consider the linear transformation $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by $T(v)=J v$, and try to find bases E, F such that $[T]_{E}=J,[T]_{F}=J^{T}$.)

Deduce that $J_{n}(\lambda)$ is similar to its transpose.
7. Using Q7 and the JCF theorem, prove that every square matrix over \mathbb{C} is similar to its transpose.
$\mathbf{8}^{*}$. If A is an $n \times n$ matrix, a square root of A is defined to be an $n \times n$ matrix B such that $B^{2}=A$.
(i) Give an example of a matrix that has no square root.
(ii) Using the JCF theorem, or otherwise, prove that every invertible matrix A over \mathbb{C} has a square root.

