M2PM2 Algebra II Problem Sheet 9

Assessed work: there will be a test at the class on Tuesday December 16, 4.00. The test will consist of one surprise question and two of the starred questions from this sheet.

- **1.** Suppose that A and B are $n \times n$ matrices which are similar.
 - (i) Prove that A^2 is similar to B^2 .
 - (ii) Prove that for any polynomial f(x), the matrices f(A) and f(B) are similar.
- **2*.** Let A be an arbitrary $n \times n$ matrix. Which of the following quantities are invariant under similarity (i.e. are the same for any matrix which is similar to A)? Give brief justifications for your answers.
 - (i) $rank(A^3 I)$
 - (ii) trace $(A + A^5)$
 - (iii) $c_1(A)$, the sum of the entries in the first column of A
 - (iv) $\operatorname{rank}(A A^T)$
 - (v) trace $(2A A^T)$.
- **3.** Suppose that λ is an eigenvalue of a block-diagonal matrix $A = A_1 \oplus \cdots \oplus A_k$. Prove that the geometric multiplicity of λ for A is equal to the sum of its geometric multiplicities for each A_i . (In other words prove that dim $E_{\lambda}(A) = \sum_{1}^{k} \dim E_{\lambda}(A_i)$, where $E_{\lambda}(A)$ and $E_{\lambda}(A_i)$ are the λ -eigenspaces of A and A_i .)
- **4*.** (i) Write down all the possible Jordan Canonical Forms having characteristic polynomial $x(x+1+i)^2(x-3)^3$.
- (ii) Calculate the number of non-similar Jordan Canonical Forms having characteristic polynomial $x^3(x-1)^6$.
- **5*.** Find the JCFs of the following matrices:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 0 & 3 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 & 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & i & 2 \\ 0 & 0 & 0 & 0 & 0 & i \end{pmatrix}$$

6. Let $J_n(\lambda)$ be a Jordan block. Prove that the matrix $J = J_n(\lambda) - \lambda I$ is similar to its transpose. (Hint (if needed): consider the linear transformation $T: \mathbb{C}^n \to \mathbb{C}^n$ defined by T(v) = Jv, and try to find bases E, F such that $[T]_E = J$, $[T]_F = J^T$.)

Deduce that $J_n(\lambda)$ is similar to its transpose.

- 7. Using Q7 and the JCF theorem, prove that every square matrix over $\mathbb C$ is similar to its transpose.
- **8*.** If A is an $n \times n$ matrix, a square root of A is defined to be an $n \times n$ matrix B such that $B^2 = A$.
 - (i) Give an example of a matrix that has no square root.
- (ii) Using the JCF theorem, or otherwise, prove that every invertible matrix A over $\mathbb C$ has a square root.