M2PM2 Algebra II Problem Sheet 6

Assessed work: there will be a test at the class on Tuesday November 25, 4.00. At the test, I will choose two of the starred questions and you will be asked to write out solutions to them. No lecture notes, books or other aids allowed.

1*. (a) Let G be a finite group and let H be a subgroup of G of size $\frac{1}{2}|G|$.

Prove that every left coset of H in G is also a right coset.

Hence prove that $H \triangleleft G$.

(b) Let G be a group, and suppose that G has two normal subgroups M and N such that $M \cap N = \{e\}$. Prove that mn = nm for all $m \in M, n \in N$. (*Hint: consider* $m^{-1}n^{-1}mn$.)

 2^* . Prove that if G is an abelian group, then every subgroup of G is a normal subgroup.

Disprove the converse of this, by giving an example of a non-abelian group G and showing that every subgroup of G is normal. (*Hint: consider groups of size 8.*)

		6 / 6	2	1	0	5 \	
3.	Calculate the determinant of the matrix	2	1	1	-2	1	
		1	1	2	-2	3	
		3	0	2	3	$^{-1}$	
			-1	-3	4	$_{2}$ /	

4*. For a real number α define

$$A(\alpha) = \begin{pmatrix} 1 & \alpha & 0 & -1 \\ 1 & 1 & 0 & -1 \\ 2 & \alpha & 1 & -1 \\ -1 & \alpha & 1 & 1 \end{pmatrix}$$

(a) Find the determinant of $A(\alpha)$.

(b) Find a value α_0 of α such that the system $A(\alpha_0)x = 0$ has a nonzero solution for $x \in \mathbb{R}^4$.

(c) Prove that when $\alpha < \alpha_0$, there is no real 4×4 matrix B such that $B^2 = A(\alpha)$.

5. Let A_n be the $n \times n$ matrix

/ 1	1	1		1	1	1
-1	1	1		1	1	1
0	-1	1		1	1	1
			• • •			
0	0	0		$^{-1}$	1	1
\ 0	0	0		0	-1	$_{1}/$

Prove that $|A_n| = 2^{n-1}$.

6*. Let B_n be the $n \times n$ matrix

(-2)	4	0	0	 0	0	0 \
1	-2	4	0	 0	0	0
0	1	-2	4	 0	0	0
0	0	0	0	 1	-2	4
$\setminus 0$	0	0	0	 0	1	-2/

(a) Prove that if $n \ge 4$, then $|B_n| = 8|B_{n-3}|$.

(b) Prove that $|B_n| = 0$ if n = 3k - 1 (where k is a positive integer).

(c) Find $|B_n|$ if n = 3k or 3k + 1.

7*. Let A, B be $n \times n$ matrices.

- (a) Prove that if |A| = 0 then |AB| = 0.
- (b) Prove that if |B| = 0 then |AB| = 0.

Hint: you may NOT assume the result |AB| = |A| |B| from lecs (this qn is supposed to be part of the proof of that result). But you MAY assume the result in lecs that says a matrix is invertible iff it has nonzero determinant.