M2PM2 Algebra II Problem Sheet 6

Assessed work: there will be a test at the class on Tuesday November 25, 4.00. At the test, I will choose two of the starred questions and you will be asked to write out solutions to them. No lecture notes, books or other aids allowed.

1*. (a) Let G be a finite group and let H be a subgroup of G of size $\frac{1}{2}|G|$.
Prove that every left coset of H in G is also a right coset.
Hence prove that $H \triangleleft G$.
(b) Let G be a group, and suppose that G has two normal subgroups M and N such that $M \cap N=\{e\}$. Prove that $m n=n m$ for all $m \in M, n \in N$. (Hint: consider $m^{-1} n^{-1} m n$.)

2*. Prove that if G is an abelian group, then every subgroup of G is a normal subgroup.
Disprove the converse of this, by giving an example of a non-abelian group G and showing that every subgroup of G is normal. (Hint: consider groups of size 8.)
3. Calculate the determinant of the matrix $\left(\begin{array}{ccccc}6 & 2 & 1 & 0 & 5 \\ 2 & 1 & 1 & -2 & 1 \\ 1 & 1 & 2 & -2 & 3 \\ 3 & 0 & 2 & 3 & -1 \\ -1 & -1 & -3 & 4 & 2\end{array}\right)$.

4*. For a real number α define

$$
A(\alpha)=\left(\begin{array}{cccc}
1 & \alpha & 0 & -1 \\
1 & 1 & 0 & -1 \\
2 & \alpha & 1 & -1 \\
-1 & \alpha & 1 & 1
\end{array}\right)
$$

(a) Find the determinant of $A(\alpha)$.
(b) Find a value α_{0} of α such that the system $A\left(\alpha_{0}\right) x=0$ has a nonzero solution for $x \in \mathbb{R}^{4}$.
(c) Prove that when $\alpha<\alpha_{0}$, there is no real 4×4 matrix B such that $B^{2}=A(\alpha)$.
5. Let A_{n} be the $n \times n$ matrix

$$
\left(\begin{array}{ccccccc}
1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
-1 & 1 & 1 & \ldots & 1 & 1 & 1 \\
0 & -1 & 1 & \ldots & 1 & 1 & 1 \\
0 & 0 & 0 & \ldots & & & \\
0 & 0 & 0 & \ldots & 0 & 1 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

Prove that $\left|A_{n}\right|=2^{n-1}$.

6*. Let B_{n} be the $n \times n$ matrix

$$
\left(\begin{array}{cccccccc}
-2 & 4 & 0 & 0 & \ldots & 0 & 0 & 0 \\
1 & -2 & 4 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -2 & 4 & \ldots & 0 & 0 & 0 \\
& & & & \ldots & & & \\
0 & 0 & 0 & 0 & \ldots & 1 & -2 & 4 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & -2
\end{array}\right)
$$

(a) Prove that if $n \geq 4$, then $\left|B_{n}\right|=8\left|B_{n-3}\right|$.
(b) Prove that $\left|B_{n}\right|=0$ if $n=3 k-1$ (where k is a positive integer).
(c) Find $\left|B_{n}\right|$ if $n=3 k$ or $3 k+1$.

7*. Let A, B be $n \times n$ matrices.
(a) Prove that if $|A|=0$ then $|A B|=0$.
(b) Prove that if $|B|=0$ then $|A B|=0$.

Hint: you may NOT assume the result $|A B|=|A||B|$ from lecs (this qn is supposed to be part of the proof of that result). But you MAY assume the result in lecs that says a matrix is invertible iff it has nonzero determinant.

