
M2P2 Algebra II

Solutions to Problem Sheet 9

1. If B = P−1AP then B2 = (P−1AP )(P−1AP ) = P−1A2P and similarly f(B) =
P−1f(A)P for any poly f(x).

2. (i) Yes: if B is similar to A then B3− I is similar to A3− I, so rank(B3− I) =
rank(A3 − I) by 15.1 of lecs.

(ii) Yes: same proof

(iii) No: eg

(
0 1
0 0

)

and

(
0 0
1 0

)

are similar but have different first row sum.

(iv) No: eg let A =

(
0 1
−1 0

)

and B =

(
i 0
0 −i

)

. Then A and B are similar,

but A−AT = 0 has rank 2, whereas B −BT has rank 0.

(v) Yes: this is a cunning trick, as A and AT have the same diagonal entries,
so trace(2A−AT ) = trace(A), which is invariant by 15.1 of lecs.

3. This question is fairly easy, but notationally awkward. Say each Ai is ni ×
ni, so A is n × n where n =

∑
ni. Write each column vector in F

n (F = R
or C) in the form v = (v1, v2, . . . , vk), where vi ∈ Fni for all i. Then Av =
(A1v1, A2v2, . . . , Akvk). Hence Av = λv if and only if Aivi = λvi for all i.

Let Eλ(Ai) be the λ-eigenspace of Ai, and let Bi be a basis of Eλ(Ai). Each
vector b ∈ Bi gives a vector (0, . . . , b, . . . 0) in Fn. Let B′i be the set of such vectors
obtained from Bi. By the previous observation, vectors in Eλ(A) are of the form
(v1, v2, . . . , vk) with vi ∈ Eλ(Ai). These are linear combinations of the vectors
in ∪B′i. Hence ∪B

′
i is a basis for Eλ(A). So dimEλ(A) =

∑
|B′i| =

∑
|Bi| =∑

dimEλ(Ai).

4. (i) J1(0) ⊕ J1(−1 − i)2 ⊕ J1(3)3, J1(0) ⊕ J1(−1 − i)2 ⊕ J2(3) ⊕ J1(3), J1(0) ⊕
J1(−1− i)2⊕J3(3), J1(0)⊕J2(−1− i)⊕J1(3)3, J1(0)⊕J2(−1− i)⊕J2(3)⊕J1(3),
J1(0)⊕ J2(−1− i)⊕ J3(3). Phew!

(ii) There are 3 possible JCFs with char poly x3 (J3(0), J2(0)⊕ J1(0) etc) and
11 with char poly (x − 1)6 (J6(1), J5(1) ⊕ J1(1) etc). So there are 33 JCFs with
char poly x3(x− 1)6.

5. J1(1)⊕ J1(0)⊕ J1(−1), J1(3)⊕ J1(0)2, J1(−1)⊕ J2(2), J4(0)⊕ J1(0), J3(−1)⊕
J1(−1)⊕ J2(i).

6. Let E be the standard basis in order e1, . . . , en and F the standard basis in
reverse order en . . . , e1. As Jen = en−1, Jen−1 = en−2, etc, the linear transfor-
mation T (v) = Jv satisfies [T ]E = J , [T ]F = J

T . So if P is the change of basis
matrix from E to F , P−1JP = JT . Therefore J and JT are similar.

Finally,

P−1Jn(λ)P = P
−1(J + λI)P = JT + λI = (J + λI)T = Jn(λ)

T

so Jn(λ) and Jn(λ)
T are similar.



7. Let A be an n × n matrix over C. By the JCF theorem A is similar to
a JCF matrix J = Jn1(λ1) ⊕ ∙ ∙ ∙ ⊕ Jnk(λk). By Q6, for each i, ∃Pi such that
P−1i Jni(λi)Pi = Jni(λi)

T . If we let P be the block-diagonal matrix P1 ⊕ ∙ ∙ ∙ ⊕ Pk,
then P−1 = P−11 ⊕ ∙ ∙ ∙ ⊕ P

−1
k and so

P−1JP = P−11 Jn1(λ1)P1⊕∙ ∙ ∙⊕P
−1
k Jnk(λk)Pk = Jn1(λ1)

T ⊕∙ ∙ ∙⊕Jnk(λk)
T = JT .

So J is similar to JT , and hence A is similar to JT , i.e. ∃Q such that Q−1AQ = JT .
Taking transposes, QTAT (Q−1)T = J . Since (Q−1)T = (QT )−1 (see the days of
M1GLA), this shows AT is similar to J . So both A and AT are similar to J ,
whence A is similar to AT . Phew!

8. (i) E.g.

(
0 1
0 0

)

(ii) This is a really nice application of the JCF. The answer is yes. Here is
a sketch. Since A is similar to a direct sum of Jordan blocks Jr(λ) (with λ 6= 0
as A is invertible), it is enough to show that each such Jordan block Jr(λ) has a
square root. Let μ be a square root of λ in C. Consider Jr(μ) = J + μI where

J =




0 1 0 ∙ ∙ ∙
0 0 1 ∙ ∙ ∙

∙ ∙ ∙



. Then Jr(μ)2 = J2 + 2μJ + μ2I. Argue that the JCF

of this matrix is Jr(μ
2) = Jr(λ). Hence ∃P such that P−1Jr(μ)2P = Jr(λ), i.e.

(P−1Jr(μ)P )
2 = Jr(λ). Hence Jr(λ) has a square root, as desired.


