M2PM2 Algebra II Solutions to Problem Sheet 8

1. (a)(i) Char. poly is $(x+1)^{2}(x-2)$, so evalues are $-1,2$ with alg multiplicities 2,1 respectively. Geom multiplicity of the evalue -1 is dimension of the -1 eigenspace, which is 1 ; geom mult of 2 is also 1 . Since geom mult of -1 is less than alg mult, there is no basis of evectors.
(ii) T sends $1 \rightarrow 0, x \rightarrow 3 x, x^{2} \rightarrow x+6 x^{2}$, so matrix of T wrt basis $1, x, x^{2}$ is $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 6\end{array}\right)$. This has distinct evalues $0,3,6$, all with alg and geom mult 1 , and there is a basis of evectors.
(b) The char poly is $(x+1)^{2}(x-1)$, so A is diagonalisable iff the -1 eigenspace has dimension 2. This eigenspace consists of solutions to the system $\left(\begin{array}{lll}0 & a & b \\ 0 & 2 & c \\ 0 & 0 & 0\end{array}\right) x=$ 0 , so it is 2 -dimensional iff $a c-2 b=0$.
2. If A, B are similar then $\exists P$ such that $B=P^{-1} A P$, so the char poly of B is

$$
\operatorname{det}\left(x I-P^{-1} A P\right)=\operatorname{det}\left(P^{-1}(x I-A) P\right)=\operatorname{det}(x I-A)
$$

(using result in lecs saying $\operatorname{det}\left(P^{-1} X P\right)=\operatorname{det} X$), which is the char poly of A.
3. We are given that $\exists P$ such that $P^{-1} A P=D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, the diagonal matrix with diagonal entries λ_{i}. By Q2, A has the same char poly as D, namely $p(x)=\prod\left(x-\lambda_{i}\right)$. Clearly $p(D)=\operatorname{diag}\left(p\left(\lambda_{1}\right), \ldots, p\left(\lambda_{n}\right)\right)=0$. Since $A=P D P^{-1}$, $A^{2}=P D^{2} P^{-1}$ and so on, we see that $p(A)=P p(D) P^{-1}=0$.
4. By induction on n. The char poly is

$$
p(x)=\operatorname{det}\left(\begin{array}{cccccc}
x & 0 & 0 & \cdots & 0 & a_{0} \\
-1 & x & 0 & \cdots & 0 & a_{1} \\
& & & \cdots & & \\
0 & 0 & 0 & \cdots & -1 & x+a_{n-1}
\end{array}\right)
$$

Expand by the first row. By induction the det of the 11-minor is $x^{n-1}+a_{n-1} x^{n-2}+$ $\cdots+a_{1}$, so we get
$p(x)=x\left(x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{1}\right)+(-1)^{n-1} a_{0} \cdot(-1)^{n-1}=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.
Hence the result by induction.
5. (a) $\left(\begin{array}{ccc}0 & 0 & 3 \\ 1 & 0 & -2 \\ 0 & 1 & 7\end{array}\right)$ works (by Q4)
(b) If we find A with char poly $x^{3}-2 x^{2}-1$ then A will satisfy the desired equation by Cayley-Hamilton. So take $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 2\end{array}\right)$.
(c) Multiplying through by B, the eqn is $B^{4}+B-I=0$. So finding B with char poly $x^{4}+x-1$ will do. use Q4 to do this.
(d) By Q4 the 2×2 matrix $A=\left(\begin{array}{ll}0 & -1 \\ 1 & -1\end{array}\right)$ satisfies $A^{2}+A+I=0$. So take $C=\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right)$.
(e) Use Q4 to get a non-identity $n \times n$ matrix with char poly $x^{n}-1$.
6. Since the only evalues of A are 0 and 1 , these are the only roots of the char poly, which must therefore be $x^{k}(x-1)^{n-k}$ for some k. Hence by Cayley-Hamilton, $A^{k}(A-I)^{n-k}=0$, and so $A^{n}(A-I)^{n}=0$.

