M2PM2 Algebra II
 Solutions to Problem Sheet 6

1. (a) Let $x \in G-H$. Then $H x \neq H$, so as $|H|=\frac{1}{2}|G|$, we have $G=H \cup H x$. Similarly $x H \neq H$ so $G=H \cup x H$. Therefore $H x=G-H=x H$. So every left coset is a right coset.

Let $x \in G$. If $x \in H$ then obviously $x^{-1} H x=H$. And if $x \notin H$ then by the above, $x H=H x$, so $H=x^{-1} H x$. Hence $H \triangleleft G$.
(b) Consider $x=m^{-1} n^{-1} m n$. As $M \triangleleft G, n^{-1} M n=M$ and so $n^{-1} m n=m^{\prime} \in$ M, therefore $x=m^{-1} m^{\prime} \in M$. Similarly $N \triangleleft G$, so $m^{-1} n^{-1} m=n^{\prime} \in N$ and so $x=n^{\prime} n \in N$. We conclude that $x \in M \cap N$. Since we are given that $M \cap N=\{e\}$ it follows that $x=e$, so $m^{-1} n^{-1} m n=e$, which implies that $m n=n m$.
2. Let H be a subgroup of the abelian group G. For $g \in G$ and $h \in H$ we have $g h=h g$, hence $g^{-1} h g=h$, and so $g^{-1} H g=H$. Therefore $H \triangleleft G$.

Consider the quaternion group Q_{8} defined in Sheet 3, Q5. Check that Q_{8} has one element of order 2 (namely $A^{2}=-I$) and all other non-identity elements have order 4. Hence, apart form the obvious subgroups $\{e\}$ and Q_{8} itself, Q_{8} has one subgroup of size 2 , namely $\left\langle A^{2}\right\rangle$, and all other subgroups have size 4 . The subgroup $\left\langle A^{2}\right\rangle$ is normal in Q_{8} as $g^{-1} A^{2} g=A^{2}$ for all $g \in Q_{8}$. And the subgroups of size 4 are all normal in Q_{8} by Question 1(a).
3. -102 (I think!)
4. (a) $|A(\alpha)|=\alpha-1$
(b) $\alpha_{0}=1$ (using result from lecs that system $A x=0$ has a nonzero soln for x iff $|A|=0)$.
(c) For $\alpha<1,|A(\alpha)|<0$. If $B^{2}=A(\alpha)$ then by the multiplicativity of det, $|B|^{2}=|A(\alpha)|<0$, which is impossible if B is real.
5. Expanding by 1 st col, get $\left|A_{n}\right|=\left|A_{n-1}\right|+\left|A_{n-1}\right|=2\left|A_{n-1}\right|$. So

$$
\left|A_{n}\right|=2\left|A_{n-1}\right|=2 \cdot 2\left|A_{n-2}\right|=\cdots=2^{n-2}\left|A_{2}\right|=2^{n-1}
$$

6. (a) Expanding by 1 st col, get

$$
\left|B_{n}\right|=-2\left|B_{n-1}\right|-4 \operatorname{det}\left(\begin{array}{cccc}
4 & 0 & 0 & \ldots \\
1 & 2 & -4 & \ldots \\
& & & \ldots
\end{array}\right)=-2\left|B_{n-1}\right|-4\left|B_{n-2}\right|
$$

Substitute for $\left|B_{n-1}\right|$ in this, using the same formula $\left(\left|B_{n-1}\right|=-2\left|B_{n-2}\right|-\right.$ $\left.4\left|B_{n-3}\right|\right)$. This gives

$$
\left|B_{n}\right|=8\left|B_{n-3}\right|
$$

(b) When $n=3 k-1$ this shows that

$$
\left|B_{n}\right|=8\left|B_{n-3}\right|=8^{2}\left|B_{n-6}\right|=\cdots=8^{k-1}\left|B_{2}\right|=0
$$

(c) When $n=3 k$, we similarly get $\left|B_{n}\right|=8^{k-1}\left|A_{3}\right|=8^{k}$. And when $n=3 k+1$, we get $\left|B_{n}\right|=8^{k}\left|A_{1}\right|=-2^{3 k+1}$.
7. (a) Suppose $|A|=0$. Then A is not invertible (result 11.6 in lecs). It follows that $A B$ is also not invertible (if it were, say the inverse was C, we'd have $A B C=I$, so $B C$ would be the inverse of A, contradiction). Hence $|A B|=0$, again by 11.6 of lecs.
(b) Similar: suppose $|B|=0$. Then B is not invertible. It follows that $A B$ is also not invertible (if it were, say the inverse was C, we'd have $C A B=I$, so $C A$ would be the inverse of B, contradiction). Hence $|A B|=0$.

