M2PM2 Algebra II Solutions to Problem Sheet 5

1. There are such homoms for r = 1 ($\phi(g) = 1$ for all $g \in S_n$) and for r = 2 ($\phi(g) = sgn(g)$ for all $g \in S_n$).

We now show there is no such homom if r > 2. For suppose $\phi : S_n \to C_r$ is an onto homom. Then $\phi(ij)$ has order 1 or 2, so is ± 1 . As every perm is a product of 2-cycles (see lecs), this forces $\phi(g) = \pm 1$ for all $g \in S_n$. Therefore $r \leq 2$.

2. (a) For $x, y \in G$, (Nx)(Ny) = Nxy = Nyx = (Ny)(Nx). Hence G/N is abelian.

(b) $G = S_3, N = A_3$. Then N is abelian, as is $G/N \cong C_2$.

(c) Let $G = D_8$, $N = \{e, \rho^2, \sigma, \rho^2 \sigma\}$ and $M = \langle \sigma \rangle$. Then $N \triangleleft G$ as shown in an example in lecs, and $M \triangleleft N$ as N is abelian. But M is not normal in G.

3. (a) G is cyclic, hence abelian, so $N \triangleleft G$ as shown in lecs. If $G = \langle x \rangle$, then every coset in the factor group G/N is of the form $Nx^r = (Nx)^r$, so G/N is generated by Nx, so is cyclic.

(b) $G = D_8$: possible H have size dividing 8, so 1,2,4 or 8. Examples in lecs show that C_1 , C_2 and D_8 are possible H. So the only question is which H of size 4 are possible. Q6 of Sheet 4 shows only $C_2 \times C_2$ is poss. So the list of H is C_1 , C_2 , $C_2 \times C_2$ and D_8

 $G = D_{12}$: by lecs the possible H are the factor groups G/N for $N \triangleleft G$. As above the only question is which H of size 4 or 6 are poss. For |H| = 4 we need |N| = 3, and the only normal subgroup of size 3 is $N = \langle \rho^2 \rangle$, for which $G/N \cong C_2 \times C_2$ by lecs. For |H| = 6 we need |N| = 2, and the only normal subgroup of size 2 is $N = \langle \rho^3 \rangle$, for which $G/N \cong D_6$ by lecs. The poss H are $C_1, C_2, C_2 \times C_2, D_6, D_{12}$.

 $G = (\mathbb{Z}, +)$: the only (automatically normal) subgroups of \mathbb{Z} are of the form $k\mathbb{Z} = \{kn : n \in \mathbb{Z}\}$. (Proof: let K be a subgroup of \mathbb{Z} , and assume $K \neq \{0\}$. Then K contains some positive integers. Let k be the smallest positive integer in K. We claim that $K = k\mathbb{Z}$. To see this, let $n \in K$. Then n = qk + r, where $q, r \in \mathbb{Z}$ and $0 \leq r < k$. Then $n \in K$ and $qk \in K$, hence $n - qk = r \in K$. By the minimal choice of k, we must have r = 0. So n = qk. This shows that $K = k\mathbb{Z}$.)

Therefore the possibilities for H are the factor groups $\mathbb{Z}/k\mathbb{Z}$ $(k \in \mathbb{N})$. These are cyclic groups (by part (a)) and are isomorphic to C_k .

4. The total number of colourings is $\binom{8}{3} \times \binom{5}{3} = 560$. The number of distinguishable colourings is the number of robits of $G = D_{16}$ on the set of colourings. The number of fixed colourings of each of the elements of G are as follows:

(where $\rho^{2i}\sigma$ are the reflections in an axis bisecting two opposite sides, and $\rho^{2i+1}\sigma$ are the other reflections). Hence by Burnside's lemma, number of orbits = average number of fixed points which is $\frac{1}{16}(560 + 48) = 38$.

5. If no colour used more than once, fix(g) = 0 for all $g \in D_8 - \{e\}$, so no. of

distinguishable colourings is $\frac{1}{8}(fix(e)) = (6.5.4.3)/8 = 45$. If colours can be used more than once, check that fixed point numbers are:

So no. of dist. colourings $=\frac{1}{8}(6^4 + \ldots + 6^2) = 231.$

6. (a) Group is rotation group of tetra which is $G \cong A_4$. Check that $fix(e) = 3^4$, while $fix(g) = 3^2$ for all $g \neq e$. hence number of dist. colourings is $\frac{1}{12}(3^4+11\cdot 3^2) = 15$.

(b) Check that $fix(g) = 4^4$ if g = e, 4^2 if g is a rotation of order 3, and 4^3 if g is a rotation of order 2. So no. of dist. colourings is $\frac{1}{12}(4^4 + 8.4^2 + 3.4^3) = 48$.

7. Very briefly: if you consider each rotation in the symmetry group of the cube as a permutation of the 4 long diagonals, you get the eight 3-cycles by rotating about axes which are long diagonals; you get the six 2-cycles by rotating about axes through the mid-points of diagonally opposite sides; and you get the 4-cycles and (2, 2)-perms by rotating about axes through the mid points of opposite faces.

8. (a) This is the number of orbits of the rotation group R of the cube in Q6. Check that fix(e) = 6!, while fix(g) = 0 for $g \neq e$. Hence number of orbits $= \frac{1}{24}(6!) = 30$.

(b) Here the number of colourings is $\binom{6}{2}$. $\binom{4}{2}$.2.1 (choose 2 faces for the 4's, then 2 faces for the 3's, then 1 face for the 2). So fix(e) = 180. Of the rotations, only the ones giving (2, 2)-perms as in Q6 fix any colourings, and these fix 4. So number of orbits is $\frac{1}{24}(180 + 3 \cdot 4) = 8$.