M2PM2 Algebra II
 Solutions to Problem Sheet 5

1. There are such homoms for $r=1\left(\phi(g)=1\right.$ for all $\left.g \in S_{n}\right)$ and for $r=2$ $\left(\phi(g)=\operatorname{sgn}(g)\right.$ for all $\left.g \in S_{n}\right)$.

We now show there is no such homom if $r>2$. For suppose $\phi: S_{n} \rightarrow C_{r}$ is an onto homom. Then $\phi(i j)$ has order 1 or 2 , so is ± 1. As every perm is a product of 2-cycles (see lecs), this forces $\phi(g)= \pm 1$ for all $g \in S_{n}$. Therefore $r \leq 2$.
2. (a) For $x, y \in G,(N x)(N y)=N x y=N y x=(N y)(N x)$. Hence G / N is abelian.
(b) $G=S_{3}, N=A_{3}$. Then N is abelian, as is $G / N \cong C_{2}$.
(c) Let $G=D_{8}, N=\left\{e, \rho^{2}, \sigma, \rho^{2} \sigma\right\}$ and $M=\langle\sigma\rangle$. Then $N \triangleleft G$ as shown in an example in lecs, and $M \triangleleft N$ as N is abelian. But M is not normal in G.
3. (a) G is cyclic, hence abelian, so $N \triangleleft G$ as shown in lecs. If $G=\langle x\rangle$, then every coset in the factor group G / N is of the form $N x^{r}=(N x)^{r}$, so G / N is generated by $N x$, so is cyclic.
(b) $G=D_{8}$: possible H have size dividing 8 , so $1,2,4$ or 8 . Examples in lecs show that C_{1}, C_{2} and D_{8} are possible H. So the only question is which H of size 4 are possible. Q6 of Sheet 4 shows only $C_{2} \times C_{2}$ is poss. So the list of H is C_{1}, $C_{2}, C_{2} \times C_{2}$ and D_{8}
$G=D_{12}$: by lecs the possible H are the factor groups G / N for $N \triangleleft G$. As above the only question is which H of size 4 or 6 are poss. For $|H|=4$ we need $|N|=3$, and the only normal subgroup of size 3 is $N=\left\langle\rho^{2}\right\rangle$, for which $G / N \cong C_{2} \times C_{2}$ by lecs. For $|H|=6$ we need $|N|=2$, and the only normal subgroup of size 2 is $N=\left\langle\rho^{3}\right\rangle$, for which $G / N \cong D_{6}$ by lecs. The poss H are $C_{1}, C_{2}, C_{2} \times C_{2}, D_{6}, D_{12}$.
$G=(\mathbb{Z},+):$ the only (automatically normal) subgroups of \mathbb{Z} are of the form $k \mathbb{Z}=\{k n: n \in \mathbb{Z}\}$. (Proof: let K be a subgroup of \mathbb{Z}, and assume $K \neq\{0\}$. Then K contains some positive integers. Let k be the smallest positive integer in K. We claim that $K=k \mathbb{Z}$. To see this, let $n \in K$. Then $n=q k+r$, where $q, r \in \mathbb{Z}$ and $0 \leq r<k$. Then $n \in K$ and $q k \in K$, hence $n-q k=r \in K$. By the minimal choice of k, we must have $r=0$. So $n=q k$. This shows that $K=k \mathbb{Z}$.)

Therefore the possibilities for H are the factor groups $\mathbb{Z} / k \mathbb{Z}(k \in \mathbb{N})$. These are cyclic groups (by part (a)) and are isomorphic to C_{k}.
4. The total number of colourings is $\binom{8}{3} \times\binom{ 5}{3}=560$. The number of distinguishable colourings is the number of robits of $G=D_{16}$ on the set of colourings. The number of fixed colourings of each of the elements of G are as follows:

$$
\begin{array}{cllll}
g: & e & \rho^{i} & \rho^{2 i} \sigma(i=0,1,2,3) & \rho^{2 i+1} \sigma(i=0,1,2,3) \\
f i x(g): & 560 & 0 & 0 & 12
\end{array}
$$

(where $\rho^{2 i} \sigma$ are the reflections in an axis bisecting two opposite sides, and $\rho^{2 i+1} \sigma$ are the other reflections). Hence by Burnside's lemma, number of orbits = average number of fixed points which is $\frac{1}{16}(560+48)=38$.
5. If no colour used more than once, $f i x(g)=0$ for all $g \in D_{8}-\{e\}$, so no. of
distinguishable colourings is $\frac{1}{8}(f i x(e))=(6.5 .4 .3) / 8=45$. If colours can be used more than once, check that fixed point numbers are:

$$
\begin{array}{ccccccccc}
g: & e & \rho & \rho^{2} & \rho^{3} & \sigma & \rho \sigma & \rho^{2} \sigma & \rho^{3} \sigma \\
\operatorname{fix}(g): & 6^{4} & 6 & 6^{2} & 6 & 6^{3} & 6^{2} & 6^{3} & 6^{2}
\end{array}
$$

So no. of dist. colourings $=\frac{1}{8}\left(6^{4}+\ldots+6^{2}\right)=231$.
6. (a) Group is rotation group of tetra which is $G \cong A_{4}$. Check that $f i x(e)=3^{4}$, while fix $(g)=3^{2}$ for all $g \neq e$. hence number of dist. colourings is $\frac{1}{12}\left(3^{4}+11 \cdot 3^{2}\right)=$ 15.
(b) Check that $\operatorname{fix}(g)=4^{4}$ if $g=e, 4^{2}$ if g is a rotation of order 3 , and 4^{3} if g is a rotation of order 2 . So no. of dist. colourings is $\frac{1}{12}\left(4^{4}+8.4^{2}+3.4^{3}\right)=48$.
7. Very briefly: if you consider each rotation in the symmetry group of the cube as a permutation of the 4 long diagonals, you get the eight 3 -cycles by rotating about axes which are long diagonals; you get the six 2 -cycles by rotating about axes through the mid-points of diagonally opposite sides; and you get the 4 -cycles and (2,2)-perms by rotating about axes through the mid points of opposite faces.
8. (a) This is the number of orbits of the rotation group R of the cube in Q6. Check that $\operatorname{fix}(e)=6$!, while fix $(g)=0$ for $g \neq e$. Hence number of orbits $=$ $\frac{1}{24}(6!)=30$.
(b) Here the number of colourings is $\binom{6}{2} \cdot\binom{4}{2} \cdot 2 \cdot 1$ (choose 2 faces for the 4 's, then 2 faces for the 3 's, then 1 face for the 2). So $f i x(e)=180$. Of the rotations, only the ones giving (2,2)-perms as in Q6 fix any colourings, and these fix 4 . So number of orbits is $\frac{1}{24}(180+3 \cdot 4)=8$.

