M2PM2 Algebra II Solutions to Problem Sheet 4

1. Yep, image C_4 , kernel C_3 ; nope; yep, image \mathbb{Z}_n , kernel $\langle n \rangle = \{kn : k \in \mathbb{Z}\}$; yep, image $\mathbb{R}_{>0}$, kernel $\{\pm 1\}$; nope.

2. (a) Suppose G is abelian. Then for $x, y \in G$, $\phi(xy) = (xy)^2 = xyxy = xxyy = x^2y^2 = \phi(x)\phi(y)$.

(b) Suppose G is non-abelian. Then there are elements $a, b \in G$ such that $ba \neq ab$. Then $(ab)^2 \neq a^2b^2$ (otherwise abab = aabb, which implies ba = ab). Hence $\phi(ab) \neq \phi(a)\phi(b)$, so ϕ is not a homomorphism.

3. Let $g \in G$ and $x \in M \cap N$. Then $g^{-1}xg \in M$ (as $M \triangleleft G$) and $g^{-1}xg \in N$ (as $N \triangleleft G$), hence $g^{-1}xg \in M \cap N$. Thus $g^{-1}(M \cap N)g \subseteq M \cap N$. As in lecs, this implies $M \cap N \triangleleft G$.

4. (a) We prove this by induction on k. It's true for k = 1. Assume for k - 1, so $\sigma \rho^{k-1} = \rho^{-(k-1)} \sigma$. Then

$$\sigma \rho^k = \sigma \rho^{k-1} \rho = \rho^{-(k-1)} \sigma \rho = \rho^{-(k-1)} \rho^{-1} \sigma = \rho^{-k} \sigma$$

hence the result by induction.

(b) Let $x = \rho^{ri} \in \langle \rho^r \rangle$. Then

$$\begin{split} \rho^{-j}x\rho^j &= \rho^{-j+ri+j} = x, \\ (\rho^j\sigma)^{-1}x(\rho^j\sigma) &= (\sigma\rho^{-j})\rho^{ri}(\rho^j\sigma) = \sigma\rho^{ri}\sigma = \rho^{-ri}\sigma\sigma = \rho^{-ri} = x^{-1} \end{split}$$

Hence $g^{-1}xg \in \langle \rho^r \rangle$ for all $g \in D_{2n}$, so $\langle \rho^r \rangle \triangleleft D_{2n}$.

(c) $\rho^{-1}(\rho^r \sigma)\rho = \rho^{-1}\rho^r \rho^{-1}\sigma = \rho^{r-2}\sigma \notin \langle \rho^r \sigma \rangle$ (using $n \geq 3$ here), so $\langle \rho^r \sigma \rangle$ is not normal in D_{2n} .

5. (a) Let H be a subgroup of D_{2p} , and assume $H \neq \{e\}$ or D_{2p} . By Lagrange, H has size 2 or p, so H is cyclic. If |H| = 2 then H is generated by a reflection σ : as $\rho^{-1}\sigma\rho \neq e$ or σ , this is not normal in D_{2p} . If |H| = p then $H = \langle \rho \rangle$, which is normal (lecs).

Therefore the normal subgroups of D_{2p} just $\{e\}, D_{2p}$ and $\langle \rho \rangle$.

(b) By lecs, the groups H for which there is a homom from D_{2p} onto H are the groups D_{2p}/N , where $N \triangleleft D_{2p}$. Hence the groups H are C_1, D_{2p} and C_2 .

6. (i) Yes, homom $\phi(x) = x^2$.

(ii) No, 5 does not divide 12. (As $|G|/|\ker \phi| = |\operatorname{Im} \phi|$, $|\operatorname{Im} \phi|$ divides |G|.)

(iii) No: suppose ϕ is a homom from D_8 onto C_4 . Then ker ϕ has size 2. Let $K = \ker \phi$. As $K \triangleleft D_8$, K is not generated by a reflection, hence $K = \langle \rho^2 \rangle$. By the Isomorphism Theorem in lecs, $D_8/K \cong \operatorname{Im} \phi = C_4$. But $D_8/\langle \rho^2 \rangle \cong C_2 \times C_2$ (because each of the 4 right cosets K, $K\rho$, $K\sigma$, $K\rho\sigma$ has order 2), which is a contradiction.

(iv) Yes: let $N = \langle \rho^2 \rangle \triangleleft D_8$. As in the previous part, $D_8/N \cong C_2 \times C_2$. Hence the map $x \to Nx$ is a homom from D_8 onto $C_2 \times C_2$.

7. (i) Draw up a mult table to show V is closed. It contains e and each of its elements is self-inverse, so V is a subgroup.

(ii) For $v \in V$, we have $v^2 = e$; so for $g \in S_4$,

$$(g^{-1}vg)^2 = g^{-1}vgg^{-1}vg = g^{-1}v^2g = g^{-1}eg = e.$$

Therefore if $v \neq e$, $g^{-1}vg$ has order 2. It is also an even perm. All even perms of order 2 lie in V, hence $g^{-1}Vg \subseteq V$, hence $V \triangleleft S_4$.

(iii) Let $x = V(123), y = V(12) \in S_4/V$. Check that o(x) = 3, o(y) = 2 and $yx = x^{-1}y$. Hence $S_4/V \cong D_6$ as in lecs.