M2PM2 Algebra II Solutions to Problem Sheet 4

1. Yep, image C_{4}, kernel C_{3}; nope; yep, image \mathbb{Z}_{n}, kernel $\langle n\rangle=\{k n: k \in \mathbb{Z}\}$; yep, image $\mathbb{R}_{>0}$, kernel $\{ \pm 1\}$; nope.
2. (a) Suppose G is abelian. Then for $x, y \in G, \phi(x y)=(x y)^{2}=x y x y=x x y y=$ $x^{2} y^{2}=\phi(x) \phi(y)$.
(b) Suppose G is non-abelian. Then there are elements $a, b \in G$ such that $b a \neq a b$. Then $(a b)^{2} \neq a^{2} b^{2}$ (otherwise $a b a b=a a b b$, which implies $b a=a b$). Hence $\phi(a b) \neq \phi(a) \phi(b)$, so ϕ is not a homomorphism.
3. Let $g \in G$ and $x \in M \cap N$. Then $g^{-1} x g \in M$ (as $M \triangleleft G$) and $g^{-1} x g \in N$ (as $N \triangleleft G)$, hence $g^{-1} x g \in M \cap N$. Thus $g^{-1}(M \cap N) g \subseteq M \cap N$. As in lecs, this implies $M \cap N \triangleleft G$.
4. (a) We prove this by induction on k. It's true for $k=1$. Assume for $k-1$, so $\sigma \rho^{k-1}=\rho^{-(k-1)} \sigma$. Then

$$
\sigma \rho^{k}=\sigma \rho^{k-1} \rho=\rho^{-(k-1)} \sigma \rho=\rho^{-(k-1)} \rho^{-1} \sigma=\rho^{-k} \sigma,
$$

hence the result by induction.
(b) Let $x=\rho^{r i} \in\left\langle\rho^{r}\right\rangle$. Then

$$
\begin{aligned}
& \rho^{-j} x \rho^{j}=\rho^{-j+r i+j}=x \\
& \left(\rho^{j} \sigma\right)^{-1} x\left(\rho^{j} \sigma\right)=\left(\sigma \rho^{-j}\right) \rho^{r i}\left(\rho^{j} \sigma\right)=\sigma \rho^{r i} \sigma=\rho^{-r i} \sigma \sigma=\rho^{-r i}=x^{-1}
\end{aligned}
$$

Hence $g^{-1} x g \in\left\langle\rho^{r}\right\rangle$ for all $g \in D_{2 n}$, so $\left\langle\rho^{r}\right\rangle \triangleleft D_{2 n}$.
(c) $\rho^{-1}\left(\rho^{r} \sigma\right) \rho=\rho^{-1} \rho^{r} \rho^{-1} \sigma=\rho^{r-2} \sigma \notin\left\langle\rho^{r} \sigma\right\rangle$ (using $n \geq 3$ here), so $\left\langle\rho^{r} \sigma\right\rangle$ is not normal in $D_{2 n}$.
5. (a) Let H be a subgroup of $D_{2 p}$, and assume $H \neq\{e\}$ or $D_{2 p}$. By Lagrange, H has size 2 or p, so H is cyclic. If $|H|=2$ then H is generated by a reflection σ : as $\rho^{-1} \sigma \rho \neq e$ or σ, this is not normal in $D_{2 p}$. If $|H|=p$ then $H=\langle\rho\rangle$, which is normal (lecs).

Therefore the normal subgroups of $D_{2 p}$ just $\{e\}, D_{2 p}$ and $\langle\rho\rangle$.
(b) By lecs, the groups H for which there is a homom from $D_{2 p}$ onto H are the groups $D_{2 p} / N$, where $N \triangleleft D_{2 p}$. Hence the groups H are $C_{1}, D_{2 p}$ and C_{2}.
6. (i) Yes, homom $\phi(x)=x^{2}$.
(ii) No, 5 does not divide 12. (As $|G| /|\operatorname{ker} \phi|=|\operatorname{Im} \phi|,|\operatorname{Im} \phi|$ divides $|G|$.)
(iii) No: suppose ϕ is a homom from D_{8} onto C_{4}. Then ker ϕ has size 2. Let $K=\operatorname{ker} \phi$. As $K \triangleleft D_{8}, K$ is not generated by a reflection, hence $K=\left\langle\rho^{2}\right\rangle$. By the Isomorphism Theorem in lecs, $D_{8} / K \cong \operatorname{Im} \phi=C_{4}$. But $D_{8} /\left\langle\rho^{2}\right\rangle \cong C_{2} \times C_{2}$ (because each of the 4 right cosets $K, K \rho, K \sigma, K \rho \sigma$ has order 2), which is a contradiction.
(iv) Yes: let $N=\left\langle\rho^{2}\right\rangle \triangleleft D_{8}$. As in the previous part, $D_{8} / N \cong C_{2} \times C_{2}$. Hence the map $x \rightarrow N x$ is a homom from D_{8} onto $C_{2} \times C_{2}$.
7. (i) Draw up a mult table to show V is closed. It contains e and each of its elements is self-inverse, so V is a subgroup.
(ii) For $v \in V$, we have $v^{2}=e$; so for $g \in S_{4}$,

$$
\left(g^{-1} v g\right)^{2}=g^{-1} v g g^{-1} v g=g^{-1} v^{2} g=g^{-1} e g=e
$$

Therefore if $v \neq e, g^{-1} v g$ has order 2. It is also an even perm. All even perms of order 2 lie in V, hence $g^{-1} V g \subseteq V$, hence $V \triangleleft S_{4}$.
(iii) Let $x=V(123), y=V(12) \in S_{4} / V$. Check that $o(x)=3, o(y)=2$ and $y x=x^{-1} y$. Hence $S_{4} / V \cong D_{6}$ as in lecs.

