M2P2 Algebra II

Solutions to Sheet 3

1. Cycle-shapes $e,(3),(2,2),(5)$, numbers $1,20,15,24$ respectively.
2. Use Fund Theorem of Abelian Groups to get:
(a) One: C_{21}. (Point is that $C_{3} \times C_{7} \cong C_{21}$)
(b) Two: $C_{12}, C_{2} \times C_{6}$. (Notice $C_{2} \times C_{2} \times C_{3} \cong C_{2} \times C_{6}$)
(c) Five: $\left(C_{3}\right)^{4},\left(C_{3}\right)^{2} \times C_{9}, C_{3} \times C_{27},\left(C_{9}\right)^{2}, C_{81}$. Check no two of these are isomorphic by showing they have different numbers of elements of some order.
Marks: 1,1,2
3. (a) 12 (cycle-shape $(4,3))$
(b) Suppose S_{7} has a subgroup isomorphic to $D_{2 n}$. Then S_{7} has an element of order n since $D_{2 n}$ does. The orders greater than 7 of elements of S_{7} are 10 and 12 (cycle-shapes $(5,2)$ and $(4,3)$).
(c) Yes: let $x=(1234)(567)$ and $y=(13)(56)$, and check that

$$
x^{12}=e, y^{2}=e, y x=x^{-1} y
$$

Let $G=\left\{e, x, \ldots, x^{11}, y, x y, \ldots, x^{11} y\right\}$. Then G is a subgroup of S_{5} (closure and inverses can be proved using the above equations). As we saw in examples in lecs, the above equations determine the mult table of G. As they are the same as the equations for D_{24}, conclude that $G \cong D_{24}$.
Marks: 1,1,3
4. (i) $C_{2} \times \cdots \times C_{2}$ (n factors)
(ii) $D_{8} \times D_{8}$ (many other possibs)
(iii) $\mathbb{Z} \times D_{6}$, where \mathbb{Z} is the integers under addition. The abelian subgroup H is $\mathbb{Z} \times\langle\rho\rangle$, where ρ is a rotation of order 3 in D_{6}. (Many other possibs)
Marks: 1,2,2
5. (a) Easy
(b) By (a) we will get all the matrices $A^{r} B^{s}$ if we take $0 \leq r \leq 3$ and $0 \leq s \leq 1$ (note the upper limit 1 rather than 3 for s, since we can replace B^{2} by A^{2}). These matrices are

$$
\pm I, \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \pm\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)
$$

(c) We check the 3 subgroup properties:
(1) $I \in Q_{8}$
(2) Closure: using the equation $B A=A^{3} B$, we see that any product $\left(A^{r} B^{s}\right)\left(A^{t} B^{u}\right)$ is again of the form $A^{m} B^{n}$, so is in Q_{8}.
(3) Inverses: the inverse of $A^{r} B^{s}$ is $B^{-s} A^{-r}$, and using the equation $B A=A^{3} B$, we see this is again of the form $A^{m} B^{n}$, so is in Q_{8}.

Hence Q_{8} is a subgroup of $G L(2, \mathbb{C})$.
(d) Check from the list of matrices in (b) that Q_{8} has only 1 element of order 2 (namely $-I$). Since D_{8} has 5 elements of order 2 , it follows that $Q_{8} \not \approx D_{8}$.
6. (a) Let G be a non-abelian group with $|G|=8$. The elements of G have order $1,2,4$ or 8 by Lagrange. Now G has no element of order 8 (otherwise $G \cong C_{8}$ which is abelian), and not every element x satisfies $x^{2}=e$ (otherwise G would be abelian by Sheet 2, Q4). Hence G has an element x of order 4.
(b) We are given that $y \neq x^{2}$, and also $y \neq x$ or x^{-1} as these have order 4. So $y \in G-\langle x\rangle$ and

$$
G=\langle x\rangle \cup\langle x\rangle y=\left\{e, x, x^{2}, x^{3}, y, x y, x^{2} y, x^{3} y\right\}
$$

Consider the product $y x$. It is clearly not e, x, x^{2}, x^{3} or $x y$ (the last would force G to be abelian). So $y x=x^{2} y$ or $x^{3} y$. If $y x=x^{2} y$ then there are lots of ways of fiddling around to get a contradiction. Here's one:

$$
y x=x^{2} y \Rightarrow x^{2}=y x y^{-1} \Rightarrow e=\left(x^{2}\right)^{2}=\left(y x y^{-1}\right)\left(y x y^{-1}=y x^{2} y^{-1} \Rightarrow x^{2}=e\right.
$$

which is a contradiction.
Hence $y x=x^{3} y$. Now we have the equations

$$
x^{4}=e, y^{2}=e, y x=x^{3} y .
$$

These equations determine the mult table of G, and as they are also the equations determining the mult table of D_{8}, it follows that $G \cong D_{8}$.
Marks: 2,4
7. By Q6(a), G has an element x of order 4. Pick $y \in G-\langle x\rangle$. Then

$$
G=\langle x\rangle \cup\langle x\rangle y=\left\{e, x, x^{2}, x^{3}, y, x y, x^{2} y, x^{3} y\right\}
$$

Consider the product $y x$. Show exactly as in Q6(b) that $y x=x^{3} y$.
If y has order 2 then $G \cong D_{8}$ by Q6(b). The only other possibility is that y has order 4, so assume this now. Consider y^{2}. It cannot be equal to e, x or x^{3} (the latter two have order 4). It cannot be $y, x y, x^{2} y, x^{3} y$ as $y \notin\langle x\rangle$. So $y^{2}=x^{2}$. We now have the equations

$$
x^{4}=e, x^{2}=y^{2}, y x=x^{3} y
$$

These equations determine the mult table of G, and as they are also the equations determining the mult table of Q_{8}, it follows that $G \cong Q_{8}$.
8. (a) By cor. to Lagrange, non-identity elements have order 3 or 9 . There is no element of order 9 (otherwise G would be cyclic, hence abelian).
(b) Let x be a non-identity element of G, and let $y \in G-\langle x\rangle$. By (a), x, y both have order 3. If $x^{i} y^{j}=x^{k} y^{l}$ for some $0 \leq i, j, k, l \leq 2$, then $i=k, j=l$ (otherwise y would be in $\langle x\rangle$). Hence $x^{i} y^{j}(0 \leq i, j \leq 2)$ are 9 different elements of G, so are all the elements of G.
(c) Consider $y x$. By (b) it is equal to $x^{i} y^{j}$ for some $0 \leq i, j \leq 2$. It is clearly not e, x, x^{2}, y or y^{2}, so it must be one of $x y, x^{2} y, x y^{2}, x^{2} y^{2}$.

If $y x=x^{2} y$ then $(y x)^{2}=y x y x=x^{2} y x^{2} y=x^{2}(y x) x y=x^{2} x^{2} y x y=$ $x^{2} x^{2} x^{2} y y=y^{2}$, so $(y x)^{3}=y^{2} y x=x$. But by (a), $y x$ has order 3 , so $(y x)^{3}=e$, a contradiction. We get similar contradictions if $y x=x y^{2}$ or $x^{2} y^{2}$. Therefore $y x=x y$.
(d) Since $y x=x y$ we see that $\left(x^{i} y^{j}\right)\left(x^{k} y^{l}\right)=\left(x^{k} y^{l}\right)\left(x^{i} y^{j}\right)$ for all i, j, k, l. Hence G is abelian, a contradiction (we assumed in (a) that G was non-abelian).
9. By Q7 groups of size 9 are abelian. By Fund Theorem of Abelian Groups, the possibilities are C_{9} and $C_{3} \times C_{3}$. (These are not isomorphic, as the latter has no element of order 9.)

