M2PM2 Algebra II

Solutions to Sheet 2

1. We must show three things: (i) $G \cong G$, (ii) $G \cong H \Rightarrow H \cong G$, and (iii) $G \cong H, H \cong$ $K \Rightarrow G \cong K$.

For (i), observe that the identity function $f(x)=x(x \in G)$ is an isomorphism from G to G.

For (ii), let $\phi: G \rightarrow H$ be an isom. We claim ϕ^{-1} is an isomorphism $H \rightarrow G$. It is a bijection (1st yr M1F). And for $a, b \in H$, we have $a=\phi(c), b=\phi(d)$ for some $c, d \in G$, hence $\phi^{-1}(a b)=\phi^{-1}(\phi(c) \phi(d))=\phi^{-1}(\phi(c d))=c d=\phi^{-1}(a) \phi^{-1}(b)$. Hence $\phi^{-1}: H \rightarrow G$ is an isom, so $H \cong G$.

For (iii), let $\phi: G \rightarrow H$ and $\psi: H \rightarrow K$ be isoms. Then $\psi \circ \phi: G \rightarrow K$ is a bijection (M1F again), and is an isomorphism since for all $x, y \in G$,

$$
\psi \circ \phi(x y)=\psi(\phi(x y))=\psi(\phi(x) \phi(y))=\psi(\phi(x)) \psi(\phi(y))=\psi \circ \phi(x) \psi \circ \phi(y) .
$$

Hence $G \cong K$.
2. $\phi(e)=e$ by lecs, so $e=\phi\left(g g^{-1}\right)=\phi(g) \phi\left(g^{-1}\right)$ hence $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.
3. Call these groups G_{1}, \ldots, G_{5} in the order they are listed. Then $G_{2}=(\mathbb{Z},+) \cong\langle\pi\rangle=G_{4}$ as they are both infinite cyclic. Also $G_{3}=\left(\mathbb{Q}^{*}, \times\right) \cong G_{5}$, an isomorphism being $a \rightarrow a-1$. There are no further isomorphisms between these groups.
4. (a) D_{120} has elements of order 60 , whereas S_{5} does not, so $S_{5} \neq D_{120}$ by Prop 3.1 of lecs. And C_{120} is not isomorphic to either of these groups as it is abelian and the others are not.
(b) Isomorphism $\phi: D_{6} \rightarrow S_{3}$ is given by sending each element of D_{6} to the corresponding permutation of the corners of the triangle.
(c) Isomorphism $x \rightarrow e^{x}$.
(d) One subgroup of size 4 is $\langle\rho\rangle$, the subgroup consisting of all rotations. Another is the subgroup consisting of the symmetries $e, \rho^{2}, \sigma, \sigma \rho^{2}$. These subgroups are not isomorphic as one is cyclic and the other is not.
5. (a) Let $x, y \in G$. Then $x^{2}=y^{2}=(x y)^{2}=e$. So $e=x x y y=x y x y$. Multiply on left by x^{-1} and on right by y^{-1}, to get $x y=y x$. Hence G is abelian.
(b) Suppose $|G|>2$. Pick non-identity $x, y \in G, x \neq y$. Then check $\{e, x, y, x y\}$ is a subgroup (closure - write down mult table; inverses - each element is its own inverse). Hence 4 divides $|G|$ by Lagrange.
6. (a) Both +1 .
(b) $e,(3),(5),(7),(2,2),(2,4),(3,3)$.
(c) Elements of order 2 are those of cycle-shape (2,2). No. of these is $\binom{7}{2} \times\binom{ 5}{2} \times \frac{1}{2}=105$.
7. As g has odd order, it is a product of disjoint cycles, all of odd length. These are all even perms., therefore g is even.

