M2P2 Algebra II

Solutions to Sheet 1

1. FTFFFFTFFTFTTTT

2. (a) is easily checked using the permutations representing the group elements given in leckies.
(b) If $H=\langle\rho\rangle$ then as $D_{8}: H \mid=2$, the right coset $H \sigma=\left\{\sigma, \rho \sigma, \rho^{2} \sigma, \rho^{3} \sigma\right\}$ is equal to $D_{8}-H$ which is $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$.
(c) Using (a) we get $\sigma_{1} \rho^{n}=\rho^{-n} \sigma_{1}$ for all n. Hence $\sigma_{i} \sigma_{j}=\left(\sigma \rho^{m}\right)\left(\sigma \rho^{n}\right)$ (for some m, n) $=\sigma \sigma \rho^{-m} \rho^{n}=\rho^{n-m}$, which is a rotation.
(d) e has order $1 ; \rho$ and ρ^{3} have order 4 ; and the other 5 elements ρ^{2}, σ_{i} ($i=1,2,3,4$) have order 2.
(e) The seven cyclic subgroups are $\langle e\rangle,\langle\rho\rangle,\left\langle\rho^{2}\right\rangle,\left\langle\sigma_{i}\right\rangle(i=1,2,3,4)$.
3. Argue as in Q2.
4. $G(\Pi)$ contains a translation τ moving each D one place to the right, and a reflection σ in the horizontal line bisecting one particular D . Let $g \in G$. Then as shown in lecs (with the symbol F instead of D), for some n, the element $\tau^{-n} g$ fixes each symbol D . The only symmetries of the symbol D are e and σ, so $\tau^{-n} g=e$ or σ, hence $g=\tau^{n}$ or $\tau^{n} \sigma$.

Check geometrically that $\tau \sigma=\sigma \tau$. From this it is easy to check that $G(\pi)$ is abelian.
5. (a) Group has size 4, abelian
(b) Size 4, abelian
(c) Group is D_{6}, non-abelian
(d) Group is D_{8}, non-abelian
(e) Group is infinite and abelian

