M2P2 Algebra II

Solutions to Sheet 1

1. FTFFFFTFTTTTT

- 2. (a) is easily checked using the permutations representing the group elements given in leckies.
- (b) If $H = \langle \rho \rangle$ then as $D_8 : H = 2$, the right coset $H\sigma = \{\sigma, \rho\sigma, \rho^2\sigma, \rho^3\sigma\}$ is equal to $D_8 H$ which is $\{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$.
- (c) Using (a) we get $\sigma_1 \rho^n = \rho^{-n} \sigma_1$ for all n. Hence $\sigma_i \sigma_j = (\sigma \rho^m)(\sigma \rho^n)$ (for some m, n) = $\sigma \sigma \rho^{-m} \rho^n = \rho^{n-m}$, which is a rotation.
- (d) e has order 1; ρ and ρ^3 have order 4; and the other 5 elements ρ^2 , σ_i (i = 1, 2, 3, 4) have order 2.
 - (e) The seven cyclic subgroups are $\langle e \rangle$, $\langle \rho \rangle$, $\langle \rho^2 \rangle$, $\langle \sigma_i \rangle$ (i = 1, 2, 3, 4).
- **3.** Argue as in Q2.
- **4.** $G(\Pi)$ contains a translation τ moving each D one place to the right, and a reflection σ in the horizontal line bisecting one particular D. Let $g \in G$. Then as shown in lecs (with the symbol F instead of D), for some n, the element $\tau^{-n}g$ fixes each symbol D. The only symmetries of the symbol D are e and σ , so $\tau^{-n}g = e$ or σ , hence $g = \tau^n$ or $\tau^n\sigma$.

Check geometrically that $\tau \sigma = \sigma \tau$. From this it is easy to check that $G(\pi)$ is abelian.

- **5.** (a) Group has size 4, abelian
 - (b) Size 4, abelian
 - (c) Group is D_6 , non-abelian
 - (d) Group is D_8 , non-abelian
 - (e) Group is infinite and abelian