M2PM2 Algebra II Problem Sheet 8

1. (a) For each of the following linear transformations $T: V \to V$, find its eigenvalues, find their algebraic and geometric multiplicities, and determine whether V has a basis consisting of eigenvectors of T:

(i) $V = \mathbb{R}^3$, $T(x_1, x_2, x_3) = (-x_1 + x_2 - x_3, -4x_2 + 6x_3, -3x_2 + 5x_3)$.

(ii) V the vector space of polynomials over \mathbb{R} of degree at most 2, and T(p(x)) = x(2p(x+1) - p(x) - p(x-1)) for all $p(x) \in V$.

(b) For which values of a, b, c is the matrix

$$A = \begin{pmatrix} -1 & a & b \\ 0 & 1 & c \\ 0 & 0 & -1 \end{pmatrix}$$

diagonalisable (i.e. $\exists P$ such that $P^{-1}AP$ is diagonal) ?

2. Prove that if A and B are similar $n \times n$ matrices then they have the same characteristic polynomial.

3. Let A be an $n \times n$ matrix and suppose that there exists an invertible $n \times n$ matrix P such that $P^{-1}AP$ is diagonal. If p(x) is the characteristic polynomial of A, prove that p(A) = 0. (Don't use the Cayley-Hamilton theorem.)

4. Let $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, and let A be the $n \times n$ matrix

	0	0	0	•••	0	$-a_0$
	1	0	0	• • •	0	$-a_1$
A =	0	1	0	• • •	0	$-a_2$
	0	0	0	• • •	1	$-a_{n-1}$

Prove that the characteristic polynomial of A is $x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$.

5. In this question you can use Q4 and Cayley-Hamilton.

- (a) Find a 3×3 matrix which has characteristic polynomial $x^3 7x^2 + 2x 3$.
- (b) Find a 3×3 matrix A such that $A^3 2A^2 = I$.
- (c) Find a 4×4 matrix B such that $B^{-1} = B^3 + I$.
- (d) Find a real 4×4 matrix C such that $C^2 + C + I = 0$.
- (e) For each n find an $n \times n$ matrix D such that $C^n = I$ but $C \neq I$.

6. Let A be an $n \times n$ matrix, and suppose that the only eigenvalue of A in \mathbb{C} is 0. Prove that $A^n = 0$.