M2P2 Algebra II Problem Sheet 7

1. Express $\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7\end{array}\right)$ as a product of elementary matrices.
2. For $n \times n$ matrices A, B, write $A \sim B$ to mean that B can be obtained from A by a sequence of elementary row operations.

Prove that $A \sim B$ if and only if $B=E_{1} \ldots E_{k} A$, where each E_{i} is an elementary matrix. Deduce that the relation \sim is an equivalence relation.
3. Find the determinants of the following linear transformations T :
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}+2 x_{3},-x_{1}-3 x_{3}, x_{2}+x_{3}\right) .
$$

(ii) Let V be the vector space of polynomials of degree at most 3 over \mathbb{R}, and define $T: V \rightarrow V$ by $T(p(x))=p(1+x)-p^{\prime}(1-x)$ for all $p(x) \in V$.
(iii) Let V be the vector space of all 2×2 matrices over \mathbb{R}, let $M=\left(\begin{array}{ll}1 & 3 \\ 1 & 4\end{array}\right)$, and define $T: V \rightarrow V$ by $T(A)=M A$ for all $A \in V$.
4. (i) For T as in part (i) of Q1, calculate the determinant of the linear transformation $q(T)$, where $q(x)=x^{3}-2 x^{2}+3 x+1$.
(ii) For T as in part (ii) of Q1, find the eigenvalues of T, and find a basis for each eigenspace. Is there a basis B of V such that the matrix $[T]_{B}$ is diagonal ?
5. Let $A=\left(\begin{array}{ll}B & C \\ \mathbf{0} & D\end{array}\right)$, where B is $s \times s, D$ is $t \times t, C$ is $s \times t$, and $\mathbf{0}$ is the $t \times s$ zero matrix. Prove that $\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(D)$.
6. Prove that similarity of $n \times n$ matrices is an equivalence relation.
7. Let E, F be the following bases of $\mathbb{R}^{2}: E=\{(1,0),(0,1)\}, F=\{(1,3),(2,5)\}$.
(i) Find the change of basis matrix P from E to F.
(ii) Find the change of basis matrix Q from F to E.
(iii) Check that $Q=P^{-1}$.
(iv) Let $v=(a, b) \in \mathbb{R}^{2}$. Write down the column vectors $[v]_{E}$ and $[v]_{F}$, and check that $[v]_{E}=P[v]_{F}$.
(v) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T\left(x_{1}, x_{2}\right)=\left(2 x_{2}, 3 x_{1}-x_{2}\right)$. Check that $[T]_{F}=$ $P^{-1}[T]_{E} P$.
8. Let V be an n-dimensional vector space over \mathbb{R}. Define $G L(V)$ to be the set of all invertible linear transformations from $V \rightarrow V$.
(i) Prove that $G L(V)$ is a group under composition.
(ii) Prove that $G L(V) \cong G L(n, \mathbb{R})$. (Recall that $G L(n, \mathbb{R})$ is the group of all invertible $n \times n$ matrices over \mathbb{R}, under matrix multiplication.)

