M2PM2 Algebra II Problem Sheet 5

- 1. Find (with proof) all positive integers r such that there is a surjective homomorphism from S_n onto C_r for some n.
- **2.** (a) Show that if G is an abelian group, and N is a subgroup of G, then the factor group G/N is abelian.
- (b) Give an example of a non-abelian group G with a normal subgroup N such that both N and G/N are abelian.
- (c) Give an example of a group G with subgroups M, N such that $N \triangleleft G$ and $M \triangleleft N$, but M is not normal in G.
- **3.** (a) Let G be a cyclic group, and let N be a subgroup of G. Prove that $N \triangleleft G$ and the factor group G/N is also cyclic.
- (b) For each of the following groups G, find all groups H (up to isomorphism) such that there is a surjective homomorphism from G to H:

$$G = D_8$$
, $G = D_{12}$, $G = (\mathbb{Z}, +)$.

- **4.** How many distinguishable necklaces can be made out of 8 beads, 3 of which are coloured yellow, 3 red and 2 blue?
- **5.** How many distinguishable ways are there of colouring the edges of a square if 6 colours are available, and no colour is used more than once? How many if colours may be used more than once?
- **6.** (a) How many distinguishable ways are there of colouring the faces of a regular tetrahedron with 3 colours, if each colour may be used more than once?
- (b) How many distinguishable ways are there of colouring the edges of a regular tetrahedron with 4 colours, if each colour may be used more than once?
- 7. Let R be the set of rotations in the symmetry group of a cube.
- (a) By writing down as many rotation symmetries as you can think of, show that $|R| \ge 24$.
- (b) By counting the possibilities for the 'bottom' face and the 'front' face, show that $|R| \leq 24$.
- (c) By considering each rotation as a permutation of the 4 long diagonals of the cube, show that $R \cong S_4$.
- **8.** (a) Dice are made in the usual way by putting the numbers 1,2,3,4,5,6 on the faces of a cube. How many distinguishable dice can be made?
- (b) Dodgy dice are made by putting the numbers 1,2,3,3,4,4 on the faces of a cube. How many distinguishable dodgy dice can be made?