M2PM2 Algebra II Problem Sheet 4

1. Which of the following functions ϕ is a homomorphism? For those which are homomorphisms, find $\operatorname{Im} \phi$ and Ker ϕ.

$$
\begin{aligned}
& \phi: C_{12} \rightarrow C_{12} \text { defined by } \phi(x)=x^{3} \forall x \in C_{12} \\
& \phi: S_{4} \rightarrow S_{4} \text { defined by } \phi(x)=x^{3} \forall x \in S_{4} \\
& \phi:(\mathbb{Z},+) \rightarrow\left(\mathbb{Z}_{n},+\right) \text { defined by } \phi(x)=[x]_{n} \quad \forall x \in \mathbb{Z} \\
& \phi:\left(\mathbb{R}^{*}, \times\right) \rightarrow\left(\mathbb{R}^{*}, \times\right) \text { defined by } \phi(x)=|x| \forall x \in \mathbb{R}^{*} \\
& \phi:\left(\mathbb{Z}_{7},+\right) \rightarrow\left(\mathbb{Z}_{4},+\right) \text { defined by } \phi\left([x]_{7}\right)=[x]_{4} \forall[x]_{7} \in \mathbb{Z}_{7}
\end{aligned}
$$

Recall the notation: $[x]_{n}$ stands for the residue class of x modulo n, and \mathbb{R}^{*} stands for the set of non-zero real numbers.
2. Let G be a group, and define a function $\phi: G \rightarrow G$ by $\phi(g)=g^{2}$ for all $g \in G$.
(a) Prove that if G is abelian then ϕ is a homomorphism.
(b) Prove that if G is non-abelian then ϕ is not a homomorphism.
3. Let G be a group, and suppose M and N are normal subgroups of G. Show that $M \cap N$ is a normal subgroup of G.
4. Let $G=D_{2 n}=\left\{e, \rho, \ldots, \rho^{n-1}, \sigma, \rho \sigma, \ldots, \rho^{n-1} \sigma\right\}$, where ρ, σ satisfy the equations $\rho^{n}=\sigma^{2}=e, \sigma \rho=\rho^{-1} \sigma$.
(a) Prove that $\sigma \rho^{k}=\rho^{-k} \sigma$ for all integers k.
(b) Fix a positive integer r. Prove that the cyclic subgroup $\left\langle\rho^{r}\right\rangle$ is a normal subgroup of $D_{2 n}$.
(c) Assume that $n \geq 3$, and let r be a positive integer. Prove that $\left\langle\rho^{r} \sigma\right\rangle$ is not a normal subgroup of $D_{2 n}$.
5. Let p is a prime number greater than 2 .
(a) Prove that the dihedral group $D_{2 p}$ has exactly three different normal subgroups.
(b) Find all groups H (up to isomorphism) such that there is a surjective homomorphism from $D_{2 p}$ onto H.
6. Does there exist a surjective homomorphism
(i) from C_{12} onto C_{6} ?
(ii) from C_{12} onto C_{5} ?
(iii) from D_{8} onto C_{4} ?
(iv) from D_{8} onto $C_{2} \times C_{2}$?

Give reasons for your answers.
7. Define V to be the following set of permutations in S_{4} :

$$
V=\{e,(12)(34),(13)(24),(14)(23)\}
$$

(so V consists of the identity and all permutations of cycle-shape $(2,2)$).
(i) Show that V is a subgroup of S_{4}.
(ii) Show that for any $g \in S_{4}$ and $v \in V-\{e\}$, the element $g^{-1} v g$ has order 2 and is an even permutation. Deduce that $V \triangleleft S_{4}$.
(iii) The factor group S_{4} / V has order 6 , so by lecs is isomorphic to C_{6} or D_{6}. Which? (Give reasoning.)

