Assessed work: Hand in solutions to starred questions by Monday November 3rd

1. List the cycle-shapes of elements of A_{5}, and calculate how many elements there are of each shape. Check that your answers add up to $\left|A_{5}\right|$.

2*. Up to isomorphism, how many different abelian groups are there
(a) of size 21?
(b) of size 12 ?
(c) of size 81 ?

Justify your answers.
$\mathbf{3}^{*}$. (a) What is the largest order of an element of S_{7} ?
(b) Show that if S_{7} has a subgroup which is isomorphic to $D_{2 n}$, and $n>7$, then $n=10$ or 12 .
(c) Does S_{7} have a subgroup which is isomorphic to D_{24} ? (Hint: see if you can find elements of S_{7} satisfying the magic equations for D_{24}.)
4^{*}. Use direct products to give examples of groups G with the following properties:
(i) $|G|=2^{n}$ and $x^{2}=e$ for all $x \in G$, where n is an arbitrary positive integer
(ii) $|G|>8, G$ is non-abelian, and $x^{4}=e$ for all $x \in G$
(iii) G is infinite and non-abelian, and G has a subgroup H such that $|G: H|=2$ and H is abelian (recall $|G: H|$ is the index of H in G, i.e. the number of distinct right cosets of H in G).
5. Let A, B be the following matrices over the complex numbers:

$$
A=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(a) Show that $A^{4}=B^{4}=I, A^{2}=B^{2}$ and $B A=A^{3} B$.
(b) Deduce that the set $\left\{A^{r} B^{s}: r, s \in \mathbb{Z}\right\}$ consists of exactly 8 matrices, and write them down.
(c) Let Q_{8} be the set of matrices in (b). Prove that Q_{8} is a subgroup of $G L(2, \mathbb{C})$.
(d) Prove that $Q_{8} \not \neq D_{8}$.

6*. Let G be a non-abelian group such that $|G|=8$.
(a) Prove that G has an element x of order 4.
(b) Given that G has an element y such that y has order 2 and $y \neq x^{2}$, prove that $G \cong D_{8}$. (Hint: try to copy the proof in lecs for groups of size 6 .)
7. Prove that up to isomorphism, the only non-abelian groups of size 8 are D_{8} and Q_{8}.
8. Let G be a group of size 9 . Prove that G must be abelian, in the following steps:
(a) Suppose (for a contradiction) that G is non-abelian. Show that every non-identity element of G has order 3.
(b) Show that there are elements $x, y \in G$ such that $G=\left\{x^{i} y^{j}: 0 \leq i, j \leq 2\right\}$.
(c) Show that $y x=x y$. (Hint: if e.g. $y x=x y^{2}$, consider $(y x)^{3}$.)
(d) Obtain a contradiction.
9. List all groups of size 9 (up to isomorphism).

