M2PM2 Algebra II Problem Sheet 3

Assessed work: Hand in solutions to starred questions by Monday November 3rd

1. List the cycle-shapes of elements of A_5 , and calculate how many elements there are of each shape. Check that your answers add up to $|A_5|$.

2*. Up to isomorphism, how many different abelian groups are there

- (a) of size 21 ?
- (b) of size 12 ?
- (c) of size 81 ?

Justify your answers.

3*. (a) What is the largest order of an element of S_7 ?

(b) Show that if S_7 has a subgroup which is isomorphic to D_{2n} , and n > 7, then n = 10 or 12.

(c) Does S_7 have a subgroup which is isomorphic to D_{24} ? (*Hint: see if you can find elements of* S_7 satisfying the magic equations for D_{24} .)

4*. Use direct products to give examples of groups G with the following properties:

- (i) $|G| = 2^n$ and $x^2 = e$ for all $x \in G$, where n is an arbitrary positive integer
- (ii) |G| > 8, G is non-abelian, and $x^4 = e$ for all $x \in G$

(iii) G is infinite and non-abelian, and G has a subgroup H such that |G:H| = 2 and H is abelian (recall |G:H| is the *index* of H in G, i.e. the number of distinct right cosets of H in G).

5. Let A, B be the following matrices over the complex numbers:

$$A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

(a) Show that $A^4 = B^4 = I$, $A^2 = B^2$ and $BA = A^3B$.

(b) Deduce that the set $\{A^rB^s\,:\,r,s\in\mathbb{Z}\}$ consists of exactly 8 matrices, and write them down.

(c) Let Q_8 be the set of matrices in (b). Prove that Q_8 is a subgroup of $GL(2,\mathbb{C})$.

(d) Prove that $Q_8 \not\cong D_8$.

6*. Let G be a non-abelian group such that |G| = 8.

(a) Prove that G has an element x of order 4.

(b) Given that G has an element y such that y has order 2 and $y \neq x^2$, prove that $G \cong D_8$. (*Hint: try to copy the proof in lecs for groups of size 6.*)

7. Prove that up to isomorphism, the only non-abelian groups of size 8 are D_8 and Q_8 .

8. Let G be a group of size 9. Prove that G must be abelian, in the following steps:

(a) Suppose (for a contradiction) that G is non-abelian. Show that every non-identity element of G has order 3.

(b) Show that there are elements $x, y \in G$ such that $G = \{x^i y^j : 0 \le i, j \le 2\}$.

- (c) Show that yx = xy. (*Hint: if e.g.* $yx = xy^2$, consider $(yx)^3$.)
- (d) Obtain a contradiction.

9. List all groups of size 9 (up to isomorphism).