M2PM2 Algebra II

1. Prove that isomorphism of groups is an equivalence relation (i.e. prove that the relation \sim defined by $G \sim H \Leftrightarrow G \cong H$ is an equivalence relation).
2. Prove that if G, H are groups and $\phi: G \rightarrow H$ is an isomorphism, then $\phi\left(g^{-1}\right)=\phi(g)^{-1}$ for all $g \in G$.
3. Which pairs among the following groups are isomorphic ?
$(\mathbb{Q},+), \quad(\mathbb{Z},+), \quad\left(\mathbb{Q}^{*}, \times\right)$,
the subgroup $\langle\pi\rangle$ of $\left(\mathbb{R}^{*}, \times\right)$,
the group $(\mathbb{Q}-\{-1\}, *)$, where $a * b=a b+a+b \forall a, b \in \mathbb{Q}-\{-1\}$
4. (a) Prove that no two of the groups S_{5}, C_{120} and D_{120} are isomorphic to each other.
(b) Prove that S_{3} is isomorphic to D_{6}.
(c) Prove that $(\mathbb{R},+)$ is isomorphic to $\left(\mathbb{R}_{>0}, \times\right)$, where $\mathbb{R}_{>0}$ is the set of positive real numbers.
(d) Prove that D_{8} has two subgroups of size 4 which are not isomorphic to each other.
5. Let G be a group with the property that $x^{2}=e$ for all $x \in G$.
(a) Prove that G must be abelian.
(b) Prove that either $|G| \leq 2$, or $|G|$ is divisible by 4 .
6. (a) Find the signatures of the following permutations g and h :

$$
g=(1278)(359)(46), \quad h=(12)(34)(24895) .
$$

(b) List the cycle-shapes of elements of the alternating group A_{7}.
(c) Calculate the number of elements of order 2 in A_{7}.
7. Let $g \in S_{n}$. Show that if g has odd order, then g must be an even permutation.

