M2PM2 Algebra II

Problem Sheet 2

- **1.** Prove that isomorphism of groups is an equivalence relation (i.e. prove that the relation \sim defined by $G \sim H \Leftrightarrow G \cong H$ is an equivalence relation).
- **2.** Prove that if G, H are groups and $\phi : G \to H$ is an isomorphism, then $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
- **3.** Which pairs among the following groups are isomorphic?

$$(\mathbb{Q},+), \ (\mathbb{Z},+), \ (\mathbb{Q}^*,\times),$$

the subgroup $\langle \pi \rangle$ of $(\mathbb{R}^*,\times),$
the group $(\mathbb{Q}-\{-1\},*),$ where $a*b=ab+a+b \ \forall a,b\in\mathbb{Q}-\{-1\}$

- **4.** (a) Prove that no two of the groups S_5 , C_{120} and D_{120} are isomorphic to each other.
 - (b) Prove that S_3 is isomorphic to D_6 .
- (c) Prove that $(\mathbb{R}, +)$ is isomorphic to $(\mathbb{R}_{>0}, \times)$, where $\mathbb{R}_{>0}$ is the set of positive real numbers.
- (d) Prove that D_8 has two subgroups of size 4 which are not isomorphic to each other.
- **5.** Let G be a group with the property that $x^2 = e$ for all $x \in G$.
 - (a) Prove that G must be abelian.
 - (b) Prove that either $|G| \leq 2$, or |G| is divisible by 4.
- **6.** (a) Find the signatures of the following permutations g and h:

$$g = (1278)(359)(46), \quad h = (12)(34)(24895).$$

- (b) List the cycle-shapes of elements of the alternating group A_7 .
- (c) Calculate the number of elements of order 2 in A_7 .
- 7. Let $g \in S_n$. Show that if g has odd order, then g must be an even permutation.