M2P2 Algebra II Problem Sheet 1

1. (*Revision!*) Decide whether each of the following statements is true or false. Throughout, G is a group.

- 1. If we can find elements g, h in G such that gh = hg then G is abelian.
- 2. If G is cyclic then G is abelian.
- 3. If G is not cyclic then G is not abelian.
- 4. If G is infinite then no element of G has finite order.
- 5. If H is a subgroup of G and $H \cong G$, then G = H.
- 6. If $G = D_{2n}$ then every element of G has order 1, 2 or n.
- 7. If $G = S_n$ then the size of every subgroup of G divides n!.
- 8. If $G = S_n$ then no element of G has order greater than n.
- 9. If the order of every non-identity element of G is a prime number then G is cyclic.
- 10. If $G = \langle g \rangle$ is an infinite cyclic group, then g and g^{-1} are the only generators of G.
- 11. If G is cyclic then G contains two different elements g_1 and g_2 such that $G = \langle g_1 \rangle = \langle g_2 \rangle$.
- 12. If $G = GL(2, \mathbb{R})$, then some elements of G have finite order and some have infinite order.
- 13. \mathbb{Z}_7^* is a cyclic group.
- 14. Any two groups of size 13 are isomorphic to each other.
- 15. Every group of size 4 is abelian.

2. Let D_8 be the dihedral group of size 8 consisting of the rotations e, ρ, ρ^2, ρ^3 and reflections $\sigma_1, \ldots \sigma_4$ described in lectures. Write $\sigma = \sigma_1$. Prove

- (a) $\sigma \rho = \rho^{-1} \sigma$
- (b) $\{\sigma, \rho\sigma, \rho^2\sigma, \rho^3\sigma\} = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$
- (c) for any i, j, the product $\sigma_i \sigma_j$ is a rotation (*hint: use (a) and (b*))
- (c) D_8 has five elements of order 2 and two elements of order 4
- (d) D_8 has exactly seven different cyclic subgroups.

3. Do Q2, parts (a)-(c) for the dihedral group D_{2n} for n an arbitrary integer with $n \ge 3$.

4. Let Π be the infinite strip pattern

Show that every element of the symmetry group $G(\Pi)$ is of the form τ^n or $\tau^n \sigma$, where τ is a suitable translation and σ is a suitable reflection. Prove that $G(\Pi)$ is abelian.

5. For each of the following figures, describe the elements of the symmetry group of the figure, and state which of the groups is abelian:

- (a) rectangle (non-square)
- (b) square with diagonal line
- (c) hexagon with 3 extra lines
- (d) two perpendicular strips of squares
- (e) one strip of squares