M2P2 Algebra II
 Problem Sheet 1

1. (Revision!) Decide whether each of the following statements is true or false. Throughout, G is a group.
2. If we can find elements g, h in G such that $g h=h g$ then G is abelian.

2 . If G is cyclic then G is abelian.
3. If G is not cyclic then G is not abelian.
4. If G is infinite then no element of G has finite order.
5. If H is a subgroup of G and $H \cong G$, then $G=H$.
6. If $G=D_{2 n}$ then every element of G has order 1,2 or n.
7. If $G=S_{n}$ then the size of every subgroup of G divides n !.
8. If $G=S_{n}$ then no element of G has order greater than n.
9. If the order of every non-identity element of G is a prime number then G is cyclic.
10. If $G=\langle g\rangle$ is an infinite cyclic group, then g and g^{-1} are the only generators of G.
11. If G is cyclic then G contains two different elements g_{1} and g_{2} such that $G=\left\langle g_{1}\right\rangle=\left\langle g_{2}\right\rangle$.
12. If $G=G L(2, \mathbb{R})$, then some elements of G have finite order and some have infinite order.
13. \mathbb{Z}_{7}^{*} is a cyclic group.
14. Any two groups of size 13 are isomorphic to each other.
15. Every group of size 4 is abelian.
2. Let D_{8} be the dihedral group of size 8 consisting of the rotations $e, \rho, \rho^{2}, \rho^{3}$ and reflections $\sigma_{1}, \ldots \sigma_{4}$ described in lectures. Write $\sigma=\sigma_{1}$. Prove
(a) $\sigma \rho=\rho^{-1} \sigma$
(b) $\left\{\sigma, \rho \sigma, \rho^{2} \sigma, \rho^{3} \sigma\right\}=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$
(c) for any i, j, the product $\sigma_{i} \sigma_{j}$ is a rotation (hint: use (a) and (b))
(c) D_{8} has five elements of order 2 and two elements of order 4
(d) D_{8} has exactly seven different cyclic subgroups.
3. Do Q2, parts (a)-(c) for the dihedral group $D_{2 n}$ for n an arbitrary integer with $n \geq 3$.
4. Let Π be the infinite strip pattern
$\ldots \mathrm{D} D \mathrm{D} D \ldots$
Show that every element of the symmetry group $G(\Pi)$ is of the form τ^{n} or $\tau^{n} \sigma$, where τ is a suitable translation and σ is a suitable reflection. Prove that $G(\Pi)$ is abelian.
5. For each of the following figures, describe the elements of the symmetry group of the figure, and state which of the groups is abelian:
(a) rectangle (non-square)
(b) square with diagonal line
(c) hexagon with 3 extra lines
(d) two perpendicular strips of squares
(e) one strip of squares

