Monday, 19th of May 2008, 14:00-16:00

IMPERIAL COLLEGE LONDON

Course: M2MP1
Setter: Laptev
Checker: Bingham
Editor: Ivanov
External: Safarov

Date: January 18, 2008

BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2008

M2MP1

Real Analysis

Setter's signature	Checker's signature	Editor's signature

IMPERIAL COLLEGE LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2008

This paper is also taken for the relevant examination for the Associateship.

M2MP1

Real Analysis

Date: 19th of May, 2008 Time: 14:00 - 16:00

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. (i) Give the definition of $f \to l$ as $x \to a_+$ and $f \to l$, as $x \to a_-$ in terms of ε and δ .
- (ii) State the Intermediate Value Property for a continuous function f defined on $[a,b] \subset \mathbb{R}$.
- (iii) Prove that if $f:[0,1] \to [0,1]$ is continuous, then $\exists\, c \in [0,1]$, such that f(c)=c.
- (iv) Let f be continuous on [0,2]. Prove that there are $x,y \in [0,2]$ such that

$$y - x = 1$$
, $f(y) - f(x) = \frac{1}{2} (f(2) - f(0))$.

Hint: consider g(x) = f(x+1) - f(x) - (f(2) - f(0))/2, $x \in [0,1]$.

- 2. (i) State Taylor's Theorem with Lagrange's form of the remainder.
- (ii) Find Taylor's formula at 0 with Lagrange's form of the remainder for the function

$$f(x) = x \ln(1 + x^2), \qquad x \in \mathbb{R}.$$

(iii) Prove the inequality

$$(1+x)^{\frac{1}{n}} > 1 + \frac{x}{n} - \frac{n-1}{2n^2}x^2, \quad x > 0, \quad n = 2, 3, 4, \dots$$

- 3. (i) Define upper and lower Riemann sums for a bounded function $f:[a,b]\to\mathbb{R}.$
- (ii) Prove that if f is continuous on [a,b] then for any $c\in(a,b)$

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

(iii) Show that is f is a non-negative continuous function on [a,b] such that

$$\int_a^b f(x) \, dx = 0,$$

then $f(x) \equiv 0$ on [a, b].

- **4.** (i) Define a directional derivative for a function $f: B_r(a) \to \mathbb{R}$ at $a \in \mathbb{R}^n$, where $B_r(a) = \{x \in \mathbb{R}^n : |x a| < r\}$.
- (ii) Let $f: \mathbb{R}^3 \to \mathbb{R}$, such that $f(x,y,z) = xy + z^2(x+y)$ and let $\nu = (1,1,1)$. Find $f_{\nu}'(3,2,1)$.
- (iii) Let $f:\mathbb{R}^n\to\mathbb{R}$ and let for any $\alpha>0$, $x\in\mathbb{R}^n$, we have $f(\alpha x)=\alpha f(x)$. Prove that $f(x)=x\cdot\nabla f(x)$.