UNIVERSITY OF LONDON

IMPERIAL COLLEGE LONDON

Course: M2P4
Setter: Skorobogatov
Checker: Ivanov
Editor: Ivanov
External: Cremona
Date: April 2, 2007

BSc and MSci EXAMINATIONS (MATHEMATICS)
 MAY-JUNE 2007

This paper is also taken for the relevant examination for the Associateship.

M2P4 Rings and fields

DATE: examdate TIME: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Setter's signature
Checker's signature

1. i) Give the definitions of a unit, and of an irreducible element of an integral domain.
ii) Prove that the ring of polynomials with coefficients in a field is an integral domain.
iii) Which of the following polynomials are irreducible over $\mathbb{Z} / 3$: (a) $x^{2}+1$, (b) $x^{2}+x+1$, (c) $x^{3}+1$, (d) $x^{4}+x^{2}+1$? (Justify your answer.)
2. i) Give the definition of a unique factorization domain (UFD).
ii) Explain the key steps of the proof that $\mathbb{Z}[\sqrt{3}]$ is a UFD. (A few sentences will suffice.)
iii) Prove that $\mathbb{Z}[\sqrt{-2007}]$ is not a UFD. (Hint: you may want to prove first that 2 is an irreducible element of $\mathbb{Z}[\sqrt{-2007}]$.)
3. i) Give the definition of a maximal ideal of an integral domain.
ii) Prove that in a principal ideal domain every non-zero maximal ideal is generated by an irreducible element.
iii) Find all the maximal ideals of $\mathbb{Q}[x]$ containing the polynomial $x^{6}-1$. (You can use all the results from the course provided you state them clearly.)
4. i) State and prove Eisenstein's irreducibility criterion.
ii) Find all $n \in \mathbb{Z}$ such that $x^{3}+n x^{2}+6$ is irreducible over \mathbb{Q}.
iii) Find the characteristic of the field $\mathbb{Z}[\sqrt{-3}] /(4+\sqrt{-3}) \mathbb{Z}[\sqrt{-3}]$.
5. $\quad i)$ Define what is meant by the degree $[F: K]$ of an extension of fields $K \subset F$. Find $[F: \mathbb{Q}]$ where F is the smallest subfield of \mathbb{C} containing all the roots of $x^{6}-1=0$.
ii) Explain why a regular polygon with 9 sides cannot be constructed using only a ruler and a compass. (A few sentences will suffice; you are not asked to give full details or your argument.)
iii) Prove that a regular polygon with 5 sides can be constructed using only a ruler and a compass.
