UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON

Course: M2P4

Setter: Skorobogatov

Checker: Ivanov
Editor: Ivanov
External: Cremona

Date: April 2, 2007

This paper is also taken for the relevant examination for the Associateship.

M2P4 Rings and fields

DATE: examdate TIME: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Setter's signature	
Checker's signature	

- 1. *i)* Give the definitions of a unit, and of an irreducible element of an integral domain.
 - *ii)* Prove that the ring of polynomials with coefficients in a field is an integral domain.
 - iii) Which of the following polynomials are irreducible over $\mathbb{Z}/3$: (a) $x^2 + 1$, (b) $x^2 + x + 1$, (c) $x^3 + 1$, (d) $x^4 + x^2 + 1$? (Justify your answer.)
- **2.** *i)* Give the definition of a unique factorization domain (UFD).
 - ii) Explain the key steps of the proof that $\mathbb{Z}[\sqrt{3}]$ is a UFD. (A few sentences will suffice.)
 - iii) Prove that $\mathbb{Z}[\sqrt{-2007}]$ is not a UFD. (Hint: you may want to prove first that 2 is an irreducible element of $\mathbb{Z}[\sqrt{-2007}]$.)
- **3.** *i*) Give the definition of a maximal ideal of an integral domain.
 - ii) Prove that in a principal ideal domain every non-zero maximal ideal is generated by an irreducible element.
 - iii) Find all the maximal ideals of $\mathbb{Q}[x]$ containing the polynomial x^6-1 . (You can use all the results from the course provided you state them clearly.)
- **4.** *i)* State and prove Eisenstein's irreducibility criterion.
 - ii) Find all $n \in \mathbb{Z}$ such that $x^3 + nx^2 + 6$ is irreducible over \mathbb{Q} .
 - iii) Find the characteristic of the field $\mathbb{Z}[\sqrt{-3}]/(4+\sqrt{-3})\mathbb{Z}[\sqrt{-3}]$.
- 5. i) Define what is meant by the degree [F:K] of an extension of fields $K \subset F$. Find $[F:\mathbb{Q}]$ where F is the smallest subfield of \mathbb{C} containing all the roots of $x^6-1=0$.
 - ii) Explain why a regular polygon with 9 sides cannot be constructed using only a ruler and a compass. (A few sentences will suffice; you are not asked to give full details or your argument.)
 - iii) Prove that a regular polygon with 5 sides can be constructed using only a ruler and a compass.