Imperial College London

UNIVERSITY OF LONDON
BSc and MSci EXAMINATIONS (MATHEMATICS)
May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M2P4

Rings and Fields

Date: Monday, 22nd May 2006 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let R be an integral domain. Define what it means to say that
(i) R is a Euclidean domain;
(ii) R is a unique factorization domain.

What relationship (if any) is there between Euclidean domains and unique factorization domains? (No proof is required.)
Prove that $\mathbb{Z}[\sqrt{2}]$ is an Euclidean domain.
Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain.
2. Give the definition of an integral domain.

Give the definition of a field.
Prove that every finite integral domain is a field.
Let R be an integral domain and let I be an ideal of R. Prove that R / I is a field if and only if I is maximal.
Which of the following are fields? Justify your answers.
(i) $\mathbb{Q}[x] /\left(x^{2}+1\right) \mathbb{Q}[x]$;
(ii) $\mathbb{Z}[x] /\left(x^{2}-1\right) \mathbb{Z}[x]$.
3. Define the characteristic of a field.

Let F be a finite field of characteristic p. Prove the following:
(i) p is a prime number;
(ii) there is an injective homomorphism $\varphi: \mathbb{Z} / p \mathbb{Z} \rightarrow F$;
(iii) every subfield in F contains the image of the homomorphism φ as in (ii).

Suppose that $f(x) \in F[x]$, where F is a field, and that the degree of $f(x)$ is 2 or 3 . Prove that $f(x)$ is irreducible if and only if $f(x)$ has no roots in F.
Give with justification the numbers of irreducible polynomials in $(\mathbb{Z} / 2 \mathbb{Z})[x]$
(a) of degree 2;
(b) of degree 3 ;
(c) of degree 4;
(d) of degree 5 .
4. Let $f(x)$ be a polynomial of degree at least 1 and having integer coefficients. State and prove Gauss's Lemma which relates the irreducibility of $f(x)$ as an element of $\mathbb{Z}[x]$ to the irreducibility of $f(x)$ as an element of $\mathbb{Q}[x]$.

Let p be an odd prime number and let $f_{p}(x)=1+x+x^{2}+\ldots+x^{p-1}$. Prove that $f_{p}(x)$ is irreducible in $\mathbb{Q}[x]$. (You can use results from the course provided that you state them explicitly.)

Is $f_{p}(x)$ irreducible in $(\mathbb{Z} / p \mathbb{Z})[x]$?
5. Explain carefully what is meant by saying that a real number is constructible with a ruler and a compass.

Prove that if a positive number a is constructible then so is \sqrt{a}.
Prove that a regular pentagon is constructible.
Given an odd prime number p, state (without proof) a necessary and sufficient condition for a regular p-sided polygon to be constructible (that is, constructible using a ruler and a compass).

