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Give the definition of an integral domain.
Prove that every finite integral domain is a field.

Which of the following rings are integral domains? Justify your answers.
(You may use any results from the course as long as you clearly state
them.)

Give the definition of a Euclidean domain.
Prove that every Euclidean domain is a principal ideal domain.

Briefly explain why Q[z] is a Euclidean domain (three or four lines will
suffice).

Use Euclid’s algorithm to find a generator of the ideal f(z)Q[z]+ g(x)Q|x]
of Q[z], where f(z) =z? —4 and g(z) = 2% — 22> — 5z + 10.

Give the definition of the characteristic of a field.

Prove that a finite field of characteristic p, where p is a prime number, has

p"™ elements for some positive integer n.

Construct a field with 121 elements. (You may use any results from the

course as long as you clearly state them.)

Write x° + 23 4+ 2? + 1 as a product of irreducible polynomials in Z,[z].

(© 2005 University of London M2P4 Page 2 of 3



4. i) State Gauss’s lemma (no proof is required).

) Find all integers n for which the polynomial z® + nx + 5 is reducible in
Qlz].
iii) In which of the following rings is the principal ideal generated by 3

maximal? Justify your answer.
(a) Z[v—1};
(b) Z[v/-2];
(c) Z[vV=3].

You may use any results from the course as long as you clearly state them.

5. Let F C K be fields.

i) Say what it means for an element of K to be algebraic over F.
ii) Let a € K be algebraic over F. Define the minimal polynomial of a.

ii) Let F = Q, and K be the smallest subfield of R which contains v/2 and
/5. Find the degree of K over F. (Justify your answer.)

i) Find the minimal polynomial of v/2 + v/5 over Q.

You may use any results from the course as long as you clearly state them.
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