UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON

Course: M 2 P 4

Setter: Skorobogatov

Checker: Buzzard
Editor: Keating
External: Cremona

Date: February 22, 2006

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY–JUNE 2005

This paper is also taken for the relevant examination for the Associateship.

M 2 P 4 Rings and fields

DATE: examdate TIME: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Setter's signature	
Checker's signature	

- 1. i) Give the definition of an integral domain.
 - ii) Prove that every finite integral domain is a field.
 - iii) Which of the following rings are integral domains? Justify your answers. (You may use any results from the course as long as you clearly state them.)
 - (a) $\mathbf{Z}[x]/(x^2+1)\mathbf{Z}[x];$
 - (b) $\mathbf{Z}[x]/x^2\mathbf{Z}[x]$;
 - (c) $\mathbf{Z}[x]/(x^2-1)\mathbf{Z}[x];$
 - (d) $\mathbf{Z}_2[x]/(x^2+1)\mathbf{Z}_2[x];$
 - (e) $\mathbf{Z}_3[x]/(x^2+1)\mathbf{Z}_3[x]$.
- **2.** *i)* Give the definition of a Euclidean domain.
 - ii) Prove that every Euclidean domain is a principal ideal domain.
 - iii) Briefly explain why $\mathbf{Q}[x]$ is a Euclidean domain (three or four lines will suffice).
 - iv) Use Euclid's algorithm to find a generator of the ideal $f(x)\mathbf{Q}[x]+g(x)\mathbf{Q}[x]$ of $\mathbf{Q}[x]$, where $f(x)=x^2-4$ and $g(x)=x^3-2x^2-5x+10$.
- **3.** *i*) Give the definition of the characteristic of a field.
 - ii) Prove that a finite field of characteristic p, where p is a prime number, has p^n elements for some positive integer n.
 - iii) Construct a field with 121 elements. (You may use any results from the course as long as you clearly state them.)
 - iv) Write $x^5 + x^3 + x^2 + 1$ as a product of irreducible polynomials in $\mathbb{Z}_2[x]$.

- 4. i) State Gauss's lemma (no proof is required).
 - ii) Find all integers n for which the polynomial $x^3 + nx + 5$ is reducible in $\mathbf{Q}[x]$.
 - iii) In which of the following rings is the principal ideal generated by 3 maximal? Justify your answer.
 - (a) $\mathbf{Z}[\sqrt{-1}];$
 - (b) $\mathbf{Z}[\sqrt{-2}];$
 - (c) $\mathbf{Z}[\sqrt{-3}]$.

You may use any results from the course as long as you clearly state them.

- **5.** Let $F \subset K$ be fields.
 - i) Say what it means for an element of K to be algebraic over F.
 - ii) Let $\alpha \in K$ be algebraic over F. Define the minimal polynomial of α .
 - iii) Let $F = \mathbf{Q}$, and K be the smallest subfield of \mathbf{R} which contains $\sqrt{2}$ and $\sqrt{5}$. Find the degree of K over F. (Justify your answer.)
 - iv) Find the minimal polynomial of $\sqrt{2} + \sqrt{5}$ over **Q**.

You may use any results from the course as long as you clearly state them.