1. Define what it means to say that a ring is an integral domain.

Let R be an integral domain.
(a) Define what is meant by a unit of R.

Prove that u is a unit of R if and only if $u R=R$.
(b) Define what is meant by an irreducible element of R.

Find the units of $\mathbb{Z}[i]$.
For each of the elements $1+3 i$ and $2+3 i$ of $\mathbb{Z}[i]$, determine whether or not the element is irreducible.
(c) Define what is meant by a unique factorization domain.

Prove that $\mathbb{Z}[\sqrt{-11}]$ is not a unique factorization domain.
2. Say what is meant by an ideal of a commutative ring. Define what is meant by a principal ideal domain.
(a) Let $R=\mathbb{Q}[x]$. Prove that the ideal $\left(x^{2}-4\right) R+\left(x^{3}-x^{2}-x-2\right) R$ of R is a principal ideal. (If you use the fact that R is a Euclidean domain, then you must provide a full proof of this fact.)
(b) Let $R=\mathbb{Z}[x]$. Prove that the ideal $2 R+x R$ of R is not a principal ideal.
(c) Prove that if R is a principal ideal domain and

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots
$$

are ideals of R, then for some n we have

$$
I_{n}=I_{n+1}=I_{n+2}=\ldots .
$$

(d) Give an example of a principal ideal domain R and ideals $I_{1}, I_{2}, I_{3}, \ldots$ of R such that

$$
I_{1} \supset I_{2} \supset I_{3} \supset \ldots
$$

3. Suppose that R is a principal ideal domain and that $a, b, p \in R$, with p irreducible. Prove that if p divides $a b$, then p divides a or p divides b.

Now let p be an odd prime number.
Prove that if p divides $x^{2}+2$ for some integer x then p may be written in the form $p=u^{2}+2 v^{2}$ for some integers u and v. (You may assume that $\mathbb{Z}[\sqrt{-2}]$ is a principal ideal domain.)

Conversely, prove that if p may be written in the form $p=u^{2}+2 v^{2}$ for some integers u and v then p divides $x^{2}+2$ for some integer x.
4. Suppose that $f(x)$ is a non-constant polynomial with integer coefficients. Prove that if $f(x)$ is irreducible in $\mathbb{Z}[x]$ then $f(x)$ is irreducible in $\mathbb{Q}[x]$.

State Eisenstein's Irreducibility Criterion.
For each of the following polynomials, determine whether or not the polynomial is irreducible over \mathbb{Q}.
(a) $x^{3}-9$
(b) $x^{4}+x^{2}+1$
(c) $x^{4}-255 x+2004$.
5. Suppose that F and K are fields with $F \subseteq K$. Define what is meant by the degree $|K: F|$ of K over F.

Assume that F, K and E are fields with $F \subseteq K \subseteq E$, and that $|K: F|$ and $|E: K|$ are finite. State and prove a relation connecting $|E: F|$ to $|K: F|$ and $|E: K|$.

Suppose that m is a positive integer and let $\alpha=\cos \left(\frac{\pi}{2 m}\right)$.
Prove that the degree of the minimal polynomial of α over \mathbb{Q} is at most m.

Prove that in the case where m is a power of 2 , the degree of the minimal polynomial of α over \mathbb{Q} is also a power of 2 .
(You may quote any general results on minimal polynomials which you need.)

