- 1. Define what it means to say that a ring is an integral domain. Let R be an integral domain.
- (a) Define what is meant by a unit of R.

Prove that u is a unit of R if and only if uR = R.

(b) Define what is meant by an irreducible element of R.

Find the units of $\mathbb{Z}[i]$.

For each of the elements 1 + 3i and 2 + 3i of $\mathbb{Z}[i]$, determine whether or not the element is irreducible.

(c) Define what is meant by a unique factorization domain.

Prove that $\mathbb{Z}[\sqrt{-11}]$ is *not* a unique factorization domain.

- 2. Say what is meant by an ideal of a commutative ring. Define what is meant by a principal ideal domain.
- (a) Let $R = \mathbb{Q}[x]$. Prove that the ideal $(x^2 4)R + (x^3 x^2 x 2)R$ of R is a principal ideal. (If you use the fact that R is a Euclidean domain, then you must provide a full proof of this fact.)
- (b) Let $R = \mathbb{Z}[x]$. Prove that the ideal 2R + xR of R is not a principal ideal.
 - (c) Prove that if R is a principal ideal domain and

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \dots$$

are ideals of R, then for some n we have

$$I_n = I_{n+1} = I_{n+2} = \dots$$
.

(d) Give an example of a principal ideal domain R and ideals $I_1, I_2, I_3, ...$ of R such that

$$I_1 \supset I_2 \supset I_3 \supset \dots$$

3. Suppose that R is a principal ideal domain and that $a, b, p \in R$, with p irreducible. Prove that if p divides ab, then p divides a or p divides b.

Now let p be an odd prime number.

Prove that if p divides $x^2 + 2$ for some integer x then p may be written in the form $p = u^2 + 2v^2$ for some integers u and v. (You may assume that $\mathbb{Z}[\sqrt{-2}]$ is a principal ideal domain.)

Conversely, prove that if p may be written in the form $p = u^2 + 2v^2$ for some integers u and v then p divides $x^2 + 2$ for some integer x.

4. Suppose that f(x) is a non-constant polynomial with integer coefficients. Prove that if f(x) is irreducible in $\mathbb{Z}[x]$ then f(x) is irreducible in $\mathbb{Q}[x]$.

State Eisenstein's Irreducibility Criterion.

For each of the following polynomials, determine whether or not the polynomial is irreducible over \mathbb{Q} .

- (a) $x^3 9$
- (b) $x^4 + x^2 + 1$
- (c) $x^4 255x + 2004$.
- 5. Suppose that F and K are fields with $F \subseteq K$. Define what is meant by the degree |K:F| of K over F.

Assume that F, K and E are fields with $F \subseteq K \subseteq E$, and that |K : F| and |E : K| are finite. State and prove a relation connecting |E : F| to |K : F| and |E : K|.

Suppose that m is a positive integer and let $\alpha = \cos(\frac{\pi}{2m})$.

Prove that the degree of the minimal polynomial of α over $\mathbb Q$ is at most m.

Prove that in the case where m is a power of 2, the degree of the minimal polynomial of α over \mathbb{Q} is also a power of 2.

(You may quote any general results on minimal polynomials which you need.)