Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS) May 2007

This paper is also taken for the relevant examination for the Associateship.

M2P3

Complex Analysis I

Date: Friday, 11th May, 2007 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $g:\mathbb{C}\to\mathbb{C}$ be a function such that for any pair of points $z_0,z_1\in\mathbb{C}$ we have

$$|g(z_0) - g(z_1)| \le \lambda |z_0 - z_1| \tag{1}$$

for some constant λ with $0 < \lambda < 1$.

- (a) (i) Define what it means for a function $f: \mathbb{C} \to \mathbb{C}$ to be *continuous* on \mathbb{C} .
 - (ii) Show that any function satisfying Eq. 1 is continuous.
- (b) (i) Define what it means for a sequence z_n in $\mathbb C$ to be bounded.
 - (ii) Define what it means for a sequence z_n in \mathbb{C} to be *convergent*.
 - (iii) State (without proof) the *Bolzano-Weierstrass Theorem* in \mathbb{C} .
- (c) Let $z_0=0$ and define a sequence $z_n\in\mathbb{C}$ by $z_{n+1}=g(z_n)$ for $n\in\mathbb{N}$, where g is a function satisfying Eq. 1.
 - (i) Show that for all $n \in \mathbb{N}$ we have

$$|z_{n+1} - z_n| \le \lambda^n |z_1 - z_0|.$$

Using the fact that $|z_n-z_0|\leq |z_n-z_{n-1}|+|z_{n-1}-z_{n-2}|+\ldots+|z_1-z_0|$ deduce that z_n is a bounded sequence.

(ii) Show that there exists a constant C>0 such that if m>n we have

$$|z_n - z_m| \le \lambda^n C$$

and hence deduce that z_n is a convergent sequence.

(iii) Using (a) above, deduce that there exists a unique point $z \in \mathbb{C}$ such that g(z) = z. You may use without proof any results you require about the image of a convergent sequence under a continuous function.

- 2. (a) Define what it means for a function $f: \mathbb{C} \to \mathbb{C}$ to be differentiable at a point $z \in \mathbb{C}$ and define the derivative of f at z.
 - (b) Denote f(x+iy)=u(x,y)+iv(x,y) where $u,v:\mathbb{R}^2\to\mathbb{C}$. State the Cauchy-Riemann Equations for f.
 - (c) Suppose that f is differentiable at a point $z \in \mathbb{C}$. By taking the limit along the diagonals z+h with $\mathfrak{Re}\,h=\mathfrak{Im}\,h$ and $\mathfrak{Re}\,h=-\mathfrak{Im}\,h$ respectively, show that the derivative of f can be expressed in two different ways as

$$f'(z) = \frac{1}{1+i}(u_x + u_y + iv_x + iv_y)$$

$$f'(z) = \frac{1}{1-i}(u_x - u_y + iv_x - iv_y).$$

- (d) Use this to show that the Cauchy-Riemann equations are satisfied for f.
- (e) Suppose that $f: \mathbb{C} \to \mathbb{C}$ only depends on the imaginary part of z. Show that if f is differentiable, then it must be constant, stating clearly any general results that you use.
- 3. (a) State (without proof) the ML Inequality for the integral over a smooth contour.
 - (b) Define the anti-derivative of f and state (without proof) the Fundamental Theorem of Calculus for Contour Integrals.
 - (c) Suppose that f is a continuous function and γ a closed smooth contour such that $\int_{\gamma} f \ dz \neq 0$. Show that for any polynomial p there is at least one point z on γ such that

$$|f(z) - p(z)| \ge \frac{1}{L} \left| \int_{\gamma} f \ dz \right|$$

where L is the length of γ .

(d) Show that if

$$\int_{\gamma} f \ dz = \int_{\sigma} f \ dz$$

whenever γ and σ have the same endpoints, then f has an anti-derivative.

- 4. (a) (i) Define a Star-Domain.
 - (ii) State (without proof) Cauchy's Theorem for a Star-Domain.
 - (iii) State (without proof) Cauchy's Integral Formula for an analytic function $f: D_R(z_0) \to \mathbb{C}$.
 - (b) Let $f: \mathbb{C} \to \mathbb{C}$ be the function

$$f(z) = \frac{\overline{z}}{z - a}.$$

and γ be the circle $C_r(0)$ of radius r > 0 and centre 0.

(i) If a = 0 show by direct evaluation that

$$\int_{\gamma} f \, dz = 0. \tag{2}$$

(ii) If $a \neq 0$ use the fact that $z\overline{z} = |z|^2$ to decompose f as f(z) = g(z)h(|z|) where

$$g(z) = \frac{A}{z - a} + \frac{B}{z}.$$

for appropriate constants A and B. Use Cauchy's Integral Formula to show that Eq. 2 also holds if 0 < |a| < r.

- (iii) Use Cauchy's Theorem to evaluate $\int_{\gamma} \ f \ dz$ when |a| > r.
- 5. (a) State (without proof) Taylor's Theorem for an analytic function $f: D_R(z_0) \to \mathbb{C}$. You should include an integral expression for $f^{(n)}(z_0)$, the n^{th} derivative of f at z_0 .
 - (b) Deduce Cauchy's Estimate

$$|f^{(n)}(z_0)| \le \frac{n! M(r)}{r^n}$$

for any 0 < r < R, where M(r) is an upper bound on |f(z)| on the circle $C_r(z_0)$, so that $|f(z)| \le M(r)$ for all $z \in C_r(z_0)$.

(c) Suppose that f is an analytic function $f:\mathbb{C}\to\mathbb{C}$ such that for some constant K>0

$$|f(z)| \ge K$$

for all $z \in \mathbb{C}$. By considering g(z) = 1/f(z) show that f is constant on the whole of \mathbb{C} .

(d) Suppose that f is an analytic function $f:\mathbb{C}\to\mathbb{C}$ such that for some $n\in N$, Cauchy's Estimate is an equality for all r>0. Show that for any $m\in N$

$$|f^{(m)}(z_0)| \le |f^{(n)}(z_0)| \frac{m!}{n!} r^{n-m}.$$

Deduce that $f(z)=c(z-z_0)^n$ for some constant $c\in\mathbb{C}.$