Imperial College
 London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May 2007

This paper is also taken for the relevant examination for the Associateship.

M2P3
 Complex Analysis I

Date: Friday, 11th May, 2007 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be a function such that for any pair of points $z_{0}, z_{1} \in \mathbb{C}$ we have

$$
\begin{equation*}
\left|g\left(z_{0}\right)-g\left(z_{1}\right)\right| \leq \lambda\left|z_{0}-z_{1}\right| \tag{1}
\end{equation*}
$$

for some constant λ with $0<\lambda<1$.
(a) (i) Define what it means for a function $f: \mathbb{C} \rightarrow \mathbb{C}$ to be continuous on \mathbb{C}.
(ii) Show that any function satisfying Eq. 1 is continuous.
(b) (i) Define what it means for a sequence z_{n} in \mathbb{C} to be bounded.
(ii) Define what it means for a sequence z_{n} in \mathbb{C} to be convergent.
(iii) State (without proof) the Bolzano-Weierstrass Theorem in \mathbb{C}.
(c) Let $z_{0}=0$ and define a sequence $z_{n} \in \mathbb{C}$ by $z_{n+1}=g\left(z_{n}\right)$ for $n \in \mathbb{N}$, where g is a function satisfying Eq. 1.
(i) Show that for all $n \in \mathbb{N}$ we have

$$
\left|z_{n+1}-z_{n}\right| \leq \lambda^{n}\left|z_{1}-z_{0}\right| .
$$

Using the fact that $\left|z_{n}-z_{0}\right| \leq\left|z_{n}-z_{n-1}\right|+\left|z_{n-1}-z_{n-2}\right|+\ldots+\left|z_{1}-z_{0}\right|$ deduce that z_{n} is a bounded sequence.
(ii) Show that there exists a constant $C>0$ such that if $m>n$ we have

$$
\left|z_{n}-z_{m}\right| \leq \lambda^{n} C
$$

and hence deduce that z_{n} is a convergent sequence.
(iii) Using (a) above, deduce that there exists a unique point $z \in \mathbb{C}$ such that $g(z)=z$. You may use without proof any results you require about the image of a convergent sequence under a continuous function.
2. (a) Define what it means for a function $f: \mathbb{C} \rightarrow \mathbb{C}$ to be differentiable at a point $z \in \mathbb{C}$ and define the derivative of f at z.
(b) Denote $f(x+i y)=u(x, y)+i v(x, y)$ where $u, v: \mathbb{R}^{2} \rightarrow \mathbb{C}$. State the Cauchy-Riemann Equations for f.
(c) Suppose that f is differentiable at a point $z \in \mathbb{C}$. By taking the limit along the diagonals $z+h$ with $\mathfrak{R e} h=\mathfrak{I m} h$ and $\mathfrak{R e} h=-\mathfrak{I m} h$ respectively, show that the derivative of f can be expressed in two different ways as

$$
\begin{aligned}
f^{\prime}(z) & =\frac{1}{1+i}\left(u_{x}+u_{y}+i v_{x}+i v_{y}\right) \\
f^{\prime}(z) & =\frac{1}{1-i}\left(u_{x}-u_{y}+i v_{x}-i v_{y}\right)
\end{aligned}
$$

(d) Use this to show that the Cauchy-Riemann equations are satisfied for f.
(e) Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ only depends on the imaginary part of z. Show that if f is differentiable, then it must be constant, stating clearly any general results that you use.
3. (a) State (without proof) the ML Inequality for the integral over a smooth contour.
(b) Define the anti-derivative of f and state (without proof) the Fundamental Theorem of Calculus for Contour Integrals.
(c) Suppose that f is a continuous function and γ a closed smooth contour such that $\int_{\gamma} f d z \neq 0$. Show that for any polynomial p there is at least one point z on γ such that

$$
|f(z)-p(z)| \geq \frac{1}{L}\left|\int_{\gamma} f d z\right|
$$

where L is the length of γ.
(d) Show that if

$$
\int_{\gamma} f d z=\int_{\sigma} f d z
$$

whenever γ and σ have the same endpoints, then f has an anti-derivative.
4. (a) (i) Define a Star-Domain.
(ii) State (without proof) Cauchy's Theorem for a Star-Domain.
(iii) State (without proof) Cauchy's Integral Formula for an analytic function f : $D_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$.
(b) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the function

$$
f(z)=\frac{\bar{z}}{z-a}
$$

and γ be the circle $C_{r}(0)$ of radius $r>0$ and centre 0 .
(i) If $a=0$ show by direct evaluation that

$$
\begin{equation*}
\int_{\gamma} f d z=0 \tag{2}
\end{equation*}
$$

(ii) If $a \neq 0$ use the fact that $z \bar{z}=|z|^{2}$ to decompose f as $f(z)=g(z) h(|z|)$ where

$$
g(z)=\frac{A}{z-a}+\frac{B}{z} .
$$

for appropriate constants A and B. Use Cauchy's Integral Formula to show that Eq. 2 also holds if $0<|a|<r$.
(iii) Use Cauchy's Theorem to evaluate $\int_{\gamma} f d z$ when $|a|>r$.
5. (a) State (without proof) Taylor's Theorem for an analytic function $f: D_{R}\left(z_{0}\right) \rightarrow \mathbb{C}$. You should include an integral expression for $f^{(n)}\left(z_{0}\right)$, the $n^{\text {th }}$ derivative of f at z_{0}.
(b) Deduce Cauchy's Estimate

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M(r)}{r^{n}}
$$

for any $0<r<R$, where $M(r)$ is an upper bound on $|f(z)|$ on the circle $C_{r}\left(z_{0}\right)$, so that $|f(z)| \leq M(r)$ for all $z \in C_{r}\left(z_{0}\right)$.
(c) Suppose that f is an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that for some constant $K>0$

$$
|f(z)| \geq K
$$

for all $z \in \mathbb{C}$. By considering $g(z)=1 / f(z)$ show that f is constant on the whole of \mathbb{C}.
(d) Suppose that f is an analytic function $f: \mathbb{C} \rightarrow \mathbb{C}$ such that for some $n \in N$, Cauchy's Estimate is an equality for all $r>0$. Show that for any $m \in N$

$$
\left|f^{(m)}\left(z_{0}\right)\right| \leq\left|f^{(n)}\left(z_{0}\right)\right| \frac{m!}{n!} r^{n-m}
$$

Deduce that $f(z)=c\left(z-z_{0}\right)^{n}$ for some constant $c \in \mathbb{C}$.

