- 1. Let f = u + iv be a function of a complex variable z = x + iy defined for all $z \in \mathbb{C}$.
 - (a) (i) Let a ∈ C. Define what it means for f to be C-differentiable at a. Show that if f is C-differentiable at a then f is continuous at a.
 - (ii) Deduce that if f is holomorphic on \mathbb{C} then $\{z \in \mathbb{C} : f(z) \neq 0\}$ is an *open* subset of \mathbb{C} .
 - (b) (i) Write down the Cauchy-Riemann equations that relate the partial derivatives $u_x = \partial u/\partial x$, $u_y = \partial u/\partial y$, $v_x = \partial v/\partial x$, $v_y = \partial v/\partial y$, and verify that they are equivalent to the matrix equation

$$\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}.$$

Find the matrix of partial derivatives in the special case in which f(z) = iz.

- (ii) Determine a real-valued function v = v(x, y) of x, y such that f(z) = xy + iv is holomorphic on \mathbb{C} .
- 2. (a) Give the definition of the principal value logarithm of z, denoted $\log z$, which is holomorphic on the cut plane $\mathbb{C} \setminus (-\infty, 0]$ [a proof of this is not required].
 - (b) Let $\beta: [0,1] \to \mathbb{C}$ be the curve given by $\beta(t) = t t^2 + it$. Use an appropriate version of the fundamental theorem of calculus to compute the contour integral $\int_{\beta} \frac{1}{z+1} dz$ [You may assume that the complex derivative of $\log z$ on $\mathbb{C} \setminus (-\infty, 0]$ is $\frac{1}{z}$.]
 - (c) Let $\gamma: [0, \frac{\pi}{4}] \to \mathbb{C}$ be the curve $\gamma(\theta) = 2e^{i\theta}$. Use the ML inequality to prove that

$$\left|\int_{\gamma} \frac{1}{z^4 + 1} \, dz \right| \leqslant \frac{\pi}{30}.$$

- 3. (a) Let g, h be holomorphic functions defined on an open set Ω of \mathbb{C} . Suppose that $a \in \Omega$, h(a) = 0 and $h'(a) \neq 0$, so that a is a simple pole of the function $f = \frac{g}{h}$ [this you may assume]. Define the residue of f at a, denoted $\operatorname{Res}_a f$, and show that $\operatorname{Res}_a f = \frac{g(a)}{h'(a)}$.
 - (b) Let $\sigma = e^{i\pi/4}$. Express the roots of $z^4 + 1$ in terms of σ , and show that $f(z) = \frac{1}{z^4 + 1}$ has a simple pole at $z = \sigma$. Deduce that $\text{Res}_{\sigma} f = -\frac{1}{4}\sigma$.
 - (c) Compute the residue of the function $F(z) = \frac{1}{z \sin z}$ at both $z = \pi$ and z = 0.

4. The closed contour $\Gamma = \alpha + \beta + \gamma$ illustrated is the join of a straight line segment along the positive real axis of length R, a quarter circle of radius R and a straight line segment back to 0 along the imaginary axis. Let

$$f(z) = \frac{1}{z^4 + 1}.$$

- (a) Write down a parametrization of the curve β , and that of the segment γ .
- (b) Show that $\int_{\beta} f(z) dz \to 0$ as $R \to \infty$.
- (c) Show that $\int_{\gamma} f(z) dz = -i \int_{\alpha} f(z) dz.$
- (d) Use the residue formula to show that

$$\int_0^\infty \frac{1}{x^4 + 1} \, dx = \frac{\pi}{2\sqrt{2}}.$$

[You may assume the result of Question 3(b).]

- 5. (a) Let $z = e^{i\theta}$ be a complex number of modulus one. Show that $\cos \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$, and state a similar expression for $\sin \theta$.
 - (b) Let n be a positive integer. Show that, when $\cos^{2n}\theta$ is expanded in powers of z and $\frac{1}{z}$, its constant term equals $2^{-2n} \binom{2n}{n}$ [where $\binom{2n}{n}$ is the binomial coefficient $\frac{(2n)!}{n!n!}$]. Show that the constant term in $\sin^{2n}\theta$ is the same number.
 - (c) Use contour integration to evaluate the integral

$$\int_0^{2\pi} (\sin^{2n}\theta + \cos^{2n}\theta) \, d\theta.$$

Verify that your answer is correct for n = 1.