1. Let $f=u+i v$ be a function of a complex variable $z=x+i y$ defined for all $z \in \mathbb{C}$.
(a) (i) Let $a \in \mathbb{C}$. Define what it means for f to be \mathbb{C}-differentiable at a. Show that if f is \mathbb{C}-differentiable at a then f is continuous at a.
(ii) Deduce that if f is holomorphic on \mathbb{C} then $\{z \in \mathbb{C}: f(z) \neq 0\}$ is an open subset of \mathbb{C}.
(b) (i) Write down the Cauchy-Riemann equations that relate the partial derivatives $u_{x}=\partial u / \partial x, u_{y}=\partial u / \partial y, v_{x}=\partial v / \partial x, v_{y}=\partial v / \partial y$, and verify that they are equivalent to the matrix equation

$$
\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right) .
$$

Find the matrix of partial derivatives in the special case in which $f(z)=i z$.
(ii) Determine a real-valued function $v=v(x, y)$ of x, y such that $f(z)=x y+i v$ is holomorphic on \mathbb{C}.
2. (a) Give the definition of the principal value $\log a r i t h m$ of z, denoted $\log z$, which is holomorphic on the cut plane $\mathbb{C} \backslash(-\infty, 0$] [a proof of this is not required].
(b) Let $\beta:[0,1] \rightarrow \mathbb{C}$ be the curve given by $\beta(t)=t-t^{2}+i t$. Use an appropriate version of the fundamental theorem of calculus to compute the contour integral $\int_{\beta} \frac{1}{z+1} d z$ [You may assume that the complex derivative of $\log z$ on $\mathbb{C} \backslash(-\infty, 0]$ is $\frac{1}{z}$.]
(c) Let $\gamma:\left[0, \frac{\pi}{4}\right] \rightarrow \mathbb{C}$ be the curve $\gamma(\theta)=2 e^{i \theta}$. Use the ML inequality to prove that

$$
\left|\int_{\gamma} \frac{1}{z^{4}+1} d z\right| \leqslant \frac{\pi}{30}
$$

3. (a) Let g, h be holomorphic functions defined on an open set Ω of \mathbb{C}. Suppose that $a \in \Omega, h(a)=0$ and $h^{\prime}(a) \neq 0$, so that a is a simple pole of the function $f=\frac{g}{h}$ [this you may assume]. Define the residue of f at a, denoted $\operatorname{Res}_{a} f$, and show that $\operatorname{Res}_{a} f=\frac{g(a)}{h^{\prime}(a)}$.
(b) Let $\sigma=e^{i \pi / 4}$. Express the roots of $z^{4}+1$ in terms of σ, and show that $f(z)=\frac{1}{z^{4}+1}$ has a simple pole at $z=\sigma$. Deduce that $\operatorname{Res}_{\sigma} f=-\frac{1}{4} \sigma$.
(c) Compute the residue of the function $F(z)=\frac{1}{z \sin z}$ at both $z=\pi$ and $z=0$.
4. The closed contour $\Gamma=\alpha+\beta+\gamma$ illustrated is the join of a straight line segment along the positive real axis of length R, a quarter circle of radius R and a straight line segment back to 0 along the imaginary axis. Let

$$
f(z)=\frac{1}{z^{4}+1}
$$

(a) Write down a parametrization of the curve β, and that of the segment γ.
(b) Show that $\int_{\beta} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$.
(c) Show that $\int_{\gamma} f(z) d z=-i \int_{\alpha} f(z) d z$.
(d) Use the residue formula to show that

$$
\int_{0}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{2 \sqrt{2}}
$$

[You may assume the result of Question 3(b).]
5. (a) Let $z=e^{i \theta}$ be a complex number of modulus one. Show that $\cos \theta=\frac{1}{2}\left(z+\frac{1}{z}\right)$, and state a similar expression for $\sin \theta$.
(b) Let n be a positive integer. Show that, when $\cos ^{2 n} \theta$ is expanded in powers of z and $\frac{1}{z}$, its constant term equals $2^{-2 n}\binom{2 n}{n}$ [where $\binom{2 n}{n}$ is the binomial coefficient $\left.\frac{(2 n)!}{n!n!}\right]$. Show that the constant term in $\sin ^{2 n} \theta$ is the same number.
(c) Use contour integration to evaluate the integral

$$
\int_{0}^{2 \pi}\left(\sin ^{2 n} \theta+\cos ^{2 n} \theta\right) d \theta
$$

Verify that your answer is correct for $n=1$.

