Complex Analysis (M2P3) Exam paper 2002/2003

Setter: A.Grigor'yan

April 7, 2003

Q 1 (a) Give the definition of \mathbb{C}-differentiability of a function $f(z)$. Prove that the function $f(z)=(\operatorname{Re} z)^{2}+i|z|^{2}$ is \mathbb{C}-differentiable at $z=0$.
(b) State the necessary and (separately) sufficient conditions for \mathbb{C}-differentiability involving the Cauchy-Riemann equations.
(c) Prove that the above function $f(z)$ is not \mathbb{C}-differentiable at any point $z \neq 0$.
(d) Let $u(x, y)=\cosh x \cos y$. Find a function v such that u and v satisfy the CauchyRiemann equations at all points. Hence, prove that the function $f=u+i v$ is analytic in \mathbb{C}.

Q 2 (a) State and prove the Cauchy integral formula (state clearly all results used).
(b) Using the Cauchy integral formula, evaluate the integral

$$
\int_{C(0,1)} \frac{\cos z}{z} d z
$$

Hence, prove that

$$
\int_{0}^{2 \pi} \cos (\cos \theta) \cosh (\sin \theta) d \theta=2 \pi
$$

Q 3 Let f be a function which is analytic in the punctured disk $D^{\prime}(0, R), R>0$.
(a) State Laurent's theorem about a Laurent series expansion of f at 0 .
(b) Let $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be the coefficients in the Laurent series expansion of the function f at 0 . Prove that, if $|f(z)| \leq M$ for all z such that $|z|=r$ (where $0<r<R$ and M is a constant), then

$$
\left|c_{n}\right| \leq M r^{-n}
$$

(c) Assume that in addition the function f is bounded in $D^{\prime}(0, R)$. Prove that 0 is a removable singularity for f.

Q 4 (a) Give the definition of a residue and state the residue theorem.
(b) For the function

$$
f(z)=\frac{z e^{i z}}{z^{2}+1}
$$

find all isolated singularities and evaluate the residue at each singularity.
(c) By firstly evaluating the contour integral $\int_{\gamma} f(z) d z$, where γ is a suitable closed semicircular contour and $f(z)$ is the above function, prove that

$$
\int_{-\infty}^{+\infty} \frac{t \sin t}{t^{2}+1} d t=\frac{\pi}{e}
$$

State clearly every result used.

Q 5 (a) State the necessary and sufficient condition for a continuous function to have an antiderivative in a domain.
(b) Let a function $f(z)$ be analytic in $\Omega:=\mathbb{C} \backslash\{0\}$. Prove that f has an antiderivative in Ω if and only if $\operatorname{res}_{0} f=0$.
Hint: Use part (a) and the Laurent series expansion of f at 0 .
(c) Decide (and prove) which of the following functions
(i) $\exp \left(\frac{1}{z}\right)$
(ii) $\frac{\sinh z}{z^{3}}$
has an antiderivative in $\mathbb{C} \backslash\{0\}$.

