Complex Analysis (M2P3) Exam paper 2002/2003

Setter: A.Grigor'yan

April 7, 2003

- **Q** 1 (a) Give the definition of \mathbb{C} -differentiability of a function f(z). Prove that the function $f(z) = (\operatorname{Re} z)^2 + i |z|^2$ is \mathbb{C} -differentiable at z = 0.
- (b) State the necessary and (separately) sufficient conditions for C-differentiability involving the Cauchy-Riemann equations.
- (c) Prove that the above function f(z) is not \mathbb{C} -differentiable at any point $z \neq 0$.
- (d) Let $u(x,y) = \cosh x \cos y$. Find a function v such that u and v satisfy the Cauchy-Riemann equations at all points. Hence, prove that the function f = u + iv is analytic in \mathbb{C} .
- **Q 2** (a) State and prove the Cauchy integral formula (state clearly all results used).
- (b) Using the Cauchy integral formula, evaluate the integral

$$\int_{C(0,1)} \frac{\cos z}{z} dz.$$

Hence, prove that

$$\int_0^{2\pi} \cos(\cos \theta) \cosh(\sin \theta) d\theta = 2\pi.$$

- **Q** 3 Let f be a function which is analytic in the punctured disk D'(0,R), R>0.
- (a) State Laurent's theorem about a Laurent series expansion of f at 0.
- (b) Let $\{c_n\}_{n\in\mathbb{Z}}$ be the coefficients in the Laurent series expansion of the function f at 0. Prove that, if $|f(z)| \leq M$ for all z such that |z| = r (where 0 < r < R and M is a constant), then

$$|c_n| \le Mr^{-n}$$
.

- (c) Assume that in addition the function f is bounded in D'(0,R). Prove that 0 is a removable singularity for f.
- ${f Q}$ 4 (a) Give the definition of a residue and state the residue theorem.
- (b) For the function

$$f\left(z\right) = \frac{ze^{iz}}{z^2 + 1}$$

find all isolated singularities and evaluate the residue at each singularity.

(c) By firstly evaluating the contour integral $\int_{\gamma} f(z) dz$, where γ is a suitable closed semicircular contour and f(z) is the above function, prove that

$$\int_{-\infty}^{+\infty} \frac{t \sin t}{t^2 + 1} dt = \frac{\pi}{e}.$$

State clearly every result used.

Q 5 (a) State the necessary and sufficient condition for a continuous function to have an antiderivative in a domain.

(b) Let a function f(z) be analytic in $\Omega := \mathbb{C} \setminus \{0\}$. Prove that f has an antiderivative in Ω if and only if $\operatorname{res}_0 f = 0$.

Hint: Use part (a) and the Laurent series expansion of f at 0.

- (c) Decide (and prove) which of the following functions
 - (i) $\exp\left(\frac{1}{z}\right)$ (ii) $\frac{\sinh z}{z^3}$

has an antiderivative in $\mathbb{C} \setminus \{0\}$.