M2P2 ALGEBRA II

1. (a) If G and H are groups, define what is meant by the statement that G is isomorphic to H.
(b) Give brief definitions of the following:

> an abelian group
> the cyclic group C_{n} the alternating group A_{n}
(c) Define the dihedral group $D_{2 n}$. Show that it contains two elements ρ and σ such that

$$
\rho^{n}=e, \quad \sigma^{2}=e, \quad \text { and } \sigma \rho=\rho^{-1} \sigma .
$$

(d) How many different abelian groups of size 12 are there, up to isomorphism? Justify your answer, stating any standard results you use.
(e) Prove that D_{12} is not isomorphic to A_{4}.
(f) Prove that D_{12} is isomorphic to $D_{6} \times C_{2}$.
2. (a) Let G and H be groups. Define what is meant by

$$
\begin{aligned}
& \text { a homomorphism } \phi: G \rightarrow H \\
& \text { the kernel of } \phi, \operatorname{ker} \phi \\
& \text { the image of } \phi, \operatorname{Im} \phi \\
& \text { a normal subgroup } N \text { of } G \\
& \text { the factor group } G / N \text {. }
\end{aligned}
$$

(b) Prove that $\operatorname{ker} \phi$ is a subgroup of G. Prove further that it is a normal subgroup.
(c) State a result which links the factor group $G / \operatorname{ker} \phi$ with the image of ϕ.
(d) Let p be an odd prime, and let $D_{2 p}$ be the dihedral group of size $2 p$. Find all the normal subgroups of $D_{2 p}$. Justify your answer.
(e) Find all groups H, up to isomorphism, such that there is a surjective homomorphism from $D_{2 p}$ onto H.
3. (a) Calculate the number of distinguishable necklaces that can be made from 7 beads, three of which are red, two of which are yellow, and two of which are blue.
(b) Let V be the vector space over \mathbb{R} consisting of all polynomials in x of degree at most 3 . Let $T: V \rightarrow V$ be the linear transformation defined by

$$
T(p(x))=p(x+1)+p(x-1)
$$

for all polynomials $p(x) \in V$. Calculate the determinant of T.
(c) Express the matrix

$$
\left(\begin{array}{ll}
4 & 2 \\
1 & 1
\end{array}\right)
$$

as a product of elementary matrices.
4. (a) Define the characteristic polynomial of an $n \times n$ matrix.
(b) State the Cayley-Hamilton theorem for $n \times n$ matrices.
(c) Let $n>1$, let $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R}$, and let A be the $n \times n$ matrix

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 \\
-a_{0} & -a_{1} & -a_{2} & -a_{3} & \cdots & -a_{n-1}
\end{array}\right)
$$

Prove that the characteristic polynomial of A is

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

(d) Find a real 3×3 matrix A such that $A^{3}=I$ but $A \neq I$.
(e) Find a real 3×3 matrix B such that $B^{-1}=B^{2}-I$.
(f) Find a real 4×4 matrix C such that $C^{2}=C+I$.
5. (a) Define what is meant by an inner product space over \mathbb{R}.
(b) Let V be an inner product space, and let v_{1}, \ldots, v_{r} be vectors in V. What is meant by the statement that the set $\left\{v_{1}, \ldots, v_{r}\right\}$ is orthonormal?

Prove that if $\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal set, then it is linearly independent.
(c) Let V be an inner product space of dimension n, and suppose that $\left\{v_{1}, \ldots, v_{n-1}\right\}$ is an orthonormal set of vectors in V. Prove that V contains a vector v_{n} such that $\left\{v_{1}, \ldots, v_{n}\right\}$ is an orthonormal basis of V.
(d) Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$. Prove that

$$
(x, y)=x^{T} A y \quad\left(x, y \in \mathbb{R}^{2}\right)
$$

defines an inner product on \mathbb{R}^{2}. Find an orthonormal basis of \mathbb{R}^{2} with respect to this inner product.

