M2P2 ALGEBRA II

- 1. (a) If G and H are groups, define what is meant by the statement that G is isomorphic to H.
- (b) Give brief definitions of the following:

an abelian group the cyclic group C_n the alternating group A_n

(c) Define the dihedral group D_{2n} . Show that it contains two elements ρ and σ such that

$$\rho^n = e, \quad \sigma^2 = e, \quad \text{and } \sigma\rho = \rho^{-1}\sigma.$$

- (d) How many different abelian groups of size 12 are there, up to isomorphism? Justify your answer, stating any standard results you use.
- (e) Prove that D_{12} is not isomorphic to A_4 .
- (f) Prove that D_{12} is isomorphic to $D_6 \times C_2$.

2. (a) Let G and H be groups. Define what is meant by

a homomorphism $\phi: G \to H$ the kernel of ϕ , ker ϕ the image of ϕ , Im ϕ a normal subgroup N of Gthe factor group G/N.

- (b) Prove that $\ker \phi$ is a subgroup of G. Prove further that it is a normal subgroup.
- (c) State a result which links the factor group $G/\ker\phi$ with the image of ϕ .
- (d) Let p be an odd prime, and let D_{2p} be the dihedral group of size 2p. Find all the normal subgroups of D_{2p} . Justify your answer.
- (e) Find all groups H, up to isomorphism, such that there is a surjective homomorphism from D_{2p} onto H.

- **3.** (a) Calculate the number of distinguishable necklaces that can be made from 7 beads, three of which are red, two of which are yellow, and two of which are blue.
- (b) Let V be the vector space over \mathbb{R} consisting of all polynomials in x of degree at most 3. Let $T:V\to V$ be the linear transformation defined by

$$T(p(x)) = p(x+1) + p(x-1)$$

for all polynomials $p(x) \in V$. Calculate the determinant of T.

(c) Express the matrix

$$\begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$$

as a product of elementary matrices.

- **4.** (a) Define the characteristic polynomial of an $n \times n$ matrix.
- (b) State the Cayley-Hamilton theorem for $n \times n$ matrices.
- (c) Let n > 1, let $a_0, a_1, \ldots, a_{n-1} \in \mathbb{R}$, and let A be the $n \times n$ matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ & & & & \ddots & \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} \end{pmatrix}$$

Prove that the characteristic polynomial of A is

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}.$$

- (d) Find a real 3×3 matrix A such that $A^3 = I$ but $A \neq I$.
- (e) Find a real 3×3 matrix B such that $B^{-1} = B^2 I$.
- (f) Find a real 4×4 matrix C such that $C^2 = C + I$.

- **5.** (a) Define what is meant by an inner product space over \mathbb{R} .
- (b) Let V be an inner product space, and let v_1, \ldots, v_r be vectors in V. What is meant by the statement that the set $\{v_1, \ldots, v_r\}$ is orthonormal?

Prove that if $\{v_1, \ldots, v_r\}$ is an orthonormal set, then it is linearly independent.

(c) Let V be an inner product space of dimension n, and suppose that $\{v_1, \ldots, v_{n-1}\}$ is an orthonormal set of vectors in V. Prove that V contains a vector v_n such that $\{v_1, \ldots, v_n\}$ is an orthonormal basis of V.

(d) Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
. Prove that

$$(x,y) = x^T A y$$
 $(x,y \in \mathbb{R}^2)$

defines an inner product on \mathbb{R}^2 . Find an orthonormal basis of \mathbb{R}^2 with respect to this inner product.