UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc EXAMINATION (MATHEMATICS) MAY – JUNE 2005 This paper is also taken for the relevant examination for the Associateship

M2P2 Groups, Rings and Numbers

DATE: ????? 2005

TIME: ?????

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Prove that a group in which the square of every element is the identity is an abelian group.

Let (G, *) be a group (where G is a set and * is a binary operation on G). For $g \in G$ let g^{-1} denote the inverse of g in that group, and let e be the identity element. Define a binary operation \bullet on G by the following rule: $g \bullet h = g * h^{-1}$. Prove that if (G, \bullet) is a group then $x \bullet x = e$ for every $x \in G$ and hence (G, \bullet) is abelian. Deduce the conditions on (G, *) which are necessary and sufficient for (G, \bullet) to be a group.

Let (G, *) be a group and $\varphi : G \to G$ be a mapping such that $\varphi(g) = g^{-1}$. Prove that φ is an isomorphism of (G, *) onto itself if and only if (G, *) is abelian.

2. Let (G, *) be a finite group of order n and let $g \in G$. Prove that the order of g divides n (if you are using Lagrange's theorem you must prove it).

Let p be a prime number, let $\mathbf{Z}_p = \{[a]_p \mid a \in \mathbf{Z}\}$ be the set of the residues of the integers modulo p, let * be the multiplication of the elements of \mathbf{Z}_p defined by $[a]_p * [b]_p = [ab]_p$. Prove that $(\mathbf{Z}_p \setminus [0]_p, *)$ is a group.

Find all the positive integers less than 60 which divide $5^{11} - 1$.

3. Let $\Omega = \{1, 2, ..., n\}$. Define the symmetric group S_n of Ω . Prove that every element of S_n can be written as a product of disjoint cycles. Define the alternating group A_n of Ω .

Let Δ be a regular *n*-gon having Ω as the set of vertices and whose edges are the pairs $\{i, i + 1\}$ for $1 \leq i \leq n$ (the addition is modulo *n*). Let *D* be the symmetry group of Δ , considered as a permutation group of Ω . Let t = (1, 2, ..., n), a = (1)(2, n - 1)(3, n - 2)... be elements of *D*. Prove that every element $d \in D$ can be written in the form $d = t^m a^{\varepsilon}$, where $0 \leq m \leq n - 1$, $\varepsilon \in \{0, 1\}$. Prove that *d* is of order 2 whenever $\varepsilon = 1$.

Deduce necessary and sufficient conditions on n for D to be a subgroup of A_n .

Turn over... M2P2 /Page 2 of 3

© University of London 2005

4. Let $\varphi: G \to H$ be a homomorphism. Define the kernel ker (φ) and the image Im (φ) of φ .

Prove that $\operatorname{Im}(\varphi)$ is a subgroup of H and that $\ker(\varphi)$ is a *normal* subgroup of G. Give an example of a homomorphism when $\operatorname{Im}(\varphi)$ is *not* normal in H.

Construct a surjective homomorphism φ of the symmetric group S_4 of degree 4 on the symmetric group S_3 of degree 3. What is the kernel of φ ? Justify your construction and the answer.

5. Let C be 3-dimensional cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbb{R}^3 . Let A be the symmetry group of C.

Considering the (longest) diagonals of C construct a homomorphism φ of G onto the symmetric group S_4 of degree 4.

Prove that the homomorphism φ is surjective and that its kernel is of order 2 generated by the 'central symmetry' $\tau : x \mapsto -x, x \in \mathbf{R}^3$.

Thus calculate the order of G.

Prove that the subgroup of G consisting of rotations of C is isomorphic to S_4 .