UNIVERSITY OF LONDON IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc EXAMINATION (MATHEMATICS) MAY - JUNE 2005
This paper is also taken for the relevant examination for the Associateship

M2P2 Groups, Rings and Numbers

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Prove that a group in which the square of every element is the identity is an abelian group.

Let $(G, *)$ be a group (where G is a set and $*$ is a binary operation on G). For $g \in G$ let g^{-1} denote the inverse of g in that group, and let e be the identity element. Define a binary operation \bullet on G by the following rule: $g \bullet h=g * h^{-1}$. Prove that if (G, \bullet) is a group then $x \bullet x=e$ for every $x \in G$ and hence (G, \bullet) is abelian. Deduce the conditions on $(G, *)$ which are necessary and sufficient for (G, \bullet) to be a group.

Let $(G, *)$ be a group and $\varphi: G \rightarrow G$ be a mapping such that $\varphi(g)=g^{-1}$. Prove that φ is an isomorphism of $(G, *)$ onto itself if and only if $(G, *)$ is abelian.
2. Let $(G, *)$ be a finite group of order n and let $g \in G$. Prove that the order of g divides n (if you are using Lagrange's theorem you must prove it).

Let p be a prime number, let $\mathbf{Z}_{p}=\left\{[a]_{p} \mid a \in \mathbf{Z}\right\}$ be the set of the residues of the integers modulo p, let $*$ be the multiplication of the elements of \mathbf{Z}_{p} defined by $[a]_{p} *[b]_{p}=[a b]_{p}$. Prove that $\left(\mathbf{Z}_{p} \backslash[0]_{p}, *\right)$ is a group.

Find all the positive integers less than 60 which divide $5^{11}-1$.
3. Let $\Omega=\{1,2, \ldots, n\}$. Define the symmetric group S_{n} of Ω. Prove that every element of S_{n} can be written as a product of disjoint cycles. Define the alternating group A_{n} of Ω.

Let Δ be a regular n-gon having Ω as the set of vertices and whose edges are the pairs $\{i, i+1\}$ for $1 \leq i \leq n$ (the addition is modulo n). Let D be the symmetry group of Δ, considered as a permutation group of Ω. Let $t=(1,2, \ldots, n)$, $a=(1)(2, n-1)(3, n-2) \ldots$ be elements of D. Prove that every element $d \in D$ can be written in the form $d=t^{m} a^{\varepsilon}$, where $0 \leq m \leq n-1, \varepsilon \in\{0,1\}$. Prove that d is of order 2 whenever $\varepsilon=1$.

Deduce necessary and sufficient conditions on n for D to be a subgroup of A_{n}.
4. Let $\varphi: G \rightarrow H$ be a homomorphism. Define the $\operatorname{kernel} \operatorname{ker}(\varphi)$ and the image $\operatorname{Im}(\varphi)$ of φ.

Prove that $\operatorname{Im}(\varphi)$ is a subgroup of H and that $\operatorname{ker}(\varphi)$ is a normal subgroup of G. Give an example of a homomorphism when $\operatorname{Im}(\varphi)$ is not normal in H.

Construct a surjective homomorphism φ of the symmetric group S_{4} of degree 4 on the symmetric group S_{3} of degree 3 . What is the kernel of φ ? Justify your construction and the answer.
5. Let C be 3 -dimensional cube with vertices $(\pm 1, \pm 1, \pm 1)$ in \mathbf{R}^{3}. Let A be the symmetry group of C.

Considering the (longest) diagonals of C construct a homomorphism φ of G onto the symmetric group S_{4} of degree 4 .

Prove that the homomorphism φ is surjective and that its kernel is of order 2 generated by the 'central symmetry' $\tau: x \mapsto-x, x \in \mathbf{R}^{3}$.

Thus calculate the order of G.

Prove that the subgroup of G consisting of rotations of C is isomorphic to S_{4}.

