Imperial College

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2007

This paper is also taken for the relevant examination for the Associateship.

M2P1

Analysis II
Date: examdate Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$. Write down the definition of " f is continuous at $b \in \mathbb{R}$ " in terms of ϵ, δ.
(ii) Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Write down the definition of " g is continuous at $a \in \mathbb{R}^{2 \text { " }}$ in terms of ϵ, δ.
(iii) Let us define functions $h_{1}, h_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
h_{1}\left(x_{1}, x_{2}\right)=x_{1} \quad \text { and } \quad h_{2}\left(x_{1}, x_{2}\right)=x_{2} .
$$

Prove (using the definition in (ii), or otherwise) that h_{1} and h_{2} are continuous at any $a \in \mathbb{R}^{2}$.
(iv) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous at all points of \mathbb{R}. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
F\left(x_{1}, x_{2}\right)=f\left(x_{1}+x_{2}\right) .
$$

Prove that F is continuous at all points of \mathbb{R}^{2}.
[In (iv) state explicitly any results on continuous functions that you use]
2. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$. State the Chain Rule Theorem for the composition $f \circ g$.
(i) Suppose that g is twice differentiable at a and that f is twice differentiable at $g(a)$. Prove that the composition $f \circ g$ is twice differentiable at a. Assuming that $g^{\prime}(a)=0$, show that

$$
(f \circ g)^{\prime \prime}(a)=f^{\prime}(g(a)) g^{\prime \prime}(a)
$$

(ii) Let f be strictly increasing and twice differentiable on \mathbb{R}. Let $a \in \mathbb{R}$ and let $b=f(a)$. Assuming that $f^{\prime}(a) \neq 0$, prove that the inverse function f^{-1} is twice differentiable at b and show that

$$
\left(f^{-1}\right)^{\prime \prime}(b)=-\frac{f^{\prime \prime}(a)}{\left(f^{\prime}(a)\right)^{3}}
$$

[In Question 2, you may use the chain rule and the inverse function theorem without justification]
3. (i) State Rolle's theorem and prove it.
(ii) Let f be continuous on $[a, b]$, differentiable on (a, b). Assume that $f(a)=f(b)$ and that f is not a constant function. Prove that there exist some points $x_{1}, x_{2} \in[a, b]$ such that $f^{\prime}\left(x_{1}\right)>0$ and $f^{\prime}\left(x_{2}\right)<0$.
(iii) Give an example of a function f which is continuous on $[0,1]$, differentiable on $(0,1)$, and which does not have a right derivative at 0 .
[In (iii), it is enough to give the precise definition of such a function without proofs]
4. State L'Hôpital's rule (right-sided version).
(i) Let $a \in \mathbb{R}$. Let f be twice differentiable around a and assume that $f(a)=0$. Let us define function F by

$$
F(x)=f(x)-f^{\prime}(a)(x-a)
$$

Prove that

$$
\frac{F(x)}{x-a} \rightarrow 0 \quad \text { as } \quad x \rightarrow a
$$

[If you use L'Hôpital's rule in this part, you must verify all of its assumptions]
(ii) Let $a \in \mathbb{R}$. Let f and g be twice differentiable around a and assume that $f(a)=g(a)=$ 0 . Assume in addition that $g^{\prime}(a) \neq 0$. Prove (using (i), or otherwise) that

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(i) Give definitions of upper and lower Riemann sums and of upper and lower Riemann integrals of f on $[a, b]$.
(ii) Prove that if f is Riemann integrable on $[a, b]$ and if $f(x) \geq 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f \geq 0$.
(iii) Prove that if f and g are Riemann integrable on $[a, b]$ and if $f(x) \geq g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f \geq \int_{a}^{b} g$.
(iv) Let f and g be Riemann integrable on $[a, b]$. Prove that $\int_{a}^{b}|f|+\int_{a}^{b}|g| \geq \int_{a}^{b}(f+g)$.
[In Question 5 you may use the linearity of the Riemann integral without justification]
