Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)
 May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M2P1

Analysis II

Date: Wednesday, 10 May 2006
Time: $10 \mathrm{am}-12$ noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. Let $f, g:(-1,1) \rightarrow \mathbb{R}$.
(i) Write down the definition of " $f(x) \rightarrow 5$ as $x \rightarrow 0$ " in terms of ϵ, δ.
(ii) Let $g(0)=\alpha$ for some $\alpha \in \mathbb{R}$. Write down the definition of " $g(x)$ is continuous at 0 " in terms of ϵ, δ.

Let now $f(x) \rightarrow 5$ as $x \rightarrow 0, g(0)=\alpha$, and let $g(x)$ be continuous at 0 .
(iii) Suppose that f is not continuous at 0 and that $\alpha \neq 0$. Prove that the product $f(x) g(x)$ is not continuous at 0 .
(iv) Suppose that f is not continuous at 0 and that $\alpha=0$. Is the product $f(x) g(x)$ continuous at 0 ? Give a proof or a counterexample.
2. State the Intermediate Value Theorem.

Let now $f:[-1,1] \rightarrow \mathbb{R}$ satisfy $f(x)=-f(-x)$ for all $x \in[-1,1]$. Suppose also that f is continuous on $[-1,0]$.
(i) Prove that f is continuous on $[-1,1]$.
(ii) Suppose that there is $a \in[-1,1]$ such that $f(a)=2006$. Prove that there exists $b \in[-1,1]$ such that $f(b)=2005$.
(iii) Suppose in addition that f is strictly increasing on $[-1,0]$. Prove that $f:[-1,1] \rightarrow \mathbb{R}$ has a strictly increasing inverse function $g:[-f(1), f(1)] \rightarrow \mathbb{R}$, continuous on $[-f(1), f(1)]$. (Here you may use the Inverse Function Theorem without justification.)
(iv) Suppose in addition to (iii) that f is differentiable on $(-1,1)$. Does it follows that its inverse $g:[-f(1), f(1)] \rightarrow \mathbb{R}$ is differentiable on $(-f(1), f(1))$? Give a proof or a counterexample.
3. (i) Write down the definition of " f is left differentiable at a " and define the left derivative $f_{-}^{\prime}(a)$.
(ii) Show that if f is left differentiable at a, then it is left continuous at a.

Let f be left differentiable at a. Define $F(x)=f(x)$ for $x \leq a$ and $F(x)=\alpha x+\beta$ for $x>a$, for some $\alpha, \beta \in \mathbb{R}$.
(iii) Determine values α, β for which F is continuous and differentiable at a.
(iv) What do we have to assume of f for F to be twice differentiable at a ? Give reasons for your answer.
4. State the Mean Value Theorem and prove it. In the proof, you may use Rolle's theorem without justification.

Let $-\infty<a<b<\infty$ and let f be differentiable on (a, b).
(i) Prove that if $f(x)$ is not bounded on (a, b), then its derivative $f^{\prime}(x)$ is not bounded on (a, b).
(ii) Show that the converse to (i) does not hold, i.e. $f(x)$ may be bounded on (a, b), while $f^{\prime}(x)$ is not bounded on (a, b).
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
(i) Formulate the ϵ-criterion for Riemann integrability of f.
(ii) Prove that if f is Riemann integrable, then for every $\epsilon>0$ there is a partition Δ of $[a, b]$ such that $S(f, \Delta)-s(f, \Delta)<\epsilon$.
(iii) Assume that f is continuous on $[a, b]$. Let $\alpha \in \mathbb{R}$. Show that the function

$$
F(x)=\int_{a}^{x}\left(\int_{a}^{y} f(z) d z\right) d y+\alpha
$$

is continuous on $[a, b]$. Show also that F and F^{\prime} are differentiable on (a, b). (Here you may use the preparation theorem for the Fundamental Theorem of Calculus without proof.)
(iv) Let F from (iii) satisfy $F(x)=2006$ for all $x \in[a, b]$. Show that $f(x)=0$ for all $x \in[a, b]$ and that $\alpha=2006$.

