Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M2P1

Analysis II

Date: Wednesday, 10 May 2006

Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

- 1. Let $f, g: (-1, 1) \rightarrow \mathbb{R}$.
 - (i) Write down the definition of " $f(x) \to 5$ as $x \to 0$ " in terms of ϵ, δ .
 - (ii) Let $g(0) = \alpha$ for some $\alpha \in \mathbb{R}$. Write down the definition of "g(x) is continuous at 0" in terms of ϵ, δ .

Let now $f(x) \to 5$ as $x \to 0$, $g(0) = \alpha$, and let g(x) be continuous at 0.

- (iii) Suppose that f is not continuous at 0 and that $\alpha \neq 0$. Prove that the product f(x)g(x) is not continuous at 0.
- (iv) Suppose that f is not continuous at 0 and that $\alpha = 0$. Is the product f(x)g(x) continuous at 0? Give a proof or a counterexample.
- 2. State the Intermediate Value Theorem.

Let now $f: [-1,1] \to \mathbb{R}$ satisfy f(x) = -f(-x) for all $x \in [-1,1]$. Suppose also that f is continuous on [-1,0].

- (i) Prove that f is continuous on [-1, 1].
- (ii) Suppose that there is $a \in [-1, 1]$ such that f(a) = 2006. Prove that there exists $b \in [-1, 1]$ such that f(b) = 2005.
- (iii) Suppose in addition that f is strictly increasing on [-1,0]. Prove that $f:[-1,1] \to \mathbb{R}$ has a strictly increasing inverse function $g:[-f(1), f(1)] \to \mathbb{R}$, continuous on [-f(1), f(1)]. (Here you may use the Inverse Function Theorem without justification.)
- (iv) Suppose in addition to (iii) that f is differentiable on (-1, 1). Does it follows that its inverse $g : [-f(1), f(1)] \to \mathbb{R}$ is differentiable on (-f(1), f(1))? Give a proof or a counterexample.
- 3. (i) Write down the definition of "f is left differentiable at a" and define the left derivative $f'_{-}(a)$.
 - (ii) Show that if f is left differentiable at a, then it is left continuous at a.

Let f be left differentiable at a. Define F(x) = f(x) for $x \le a$ and $F(x) = \alpha x + \beta$ for x > a, for some $\alpha, \beta \in \mathbb{R}$.

- (iii) Determine values α, β for which F is continuous and differentiable at a.
- (iv) What do we have to assume of f for F to be twice differentiable at a? Give reasons for your answer.

4. State the Mean Value Theorem and prove it. In the proof, you may use Rolle's theorem without justification.

Let $-\infty < a < b < \infty$ and let f be differentiable on (a, b).

- (i) Prove that if f(x) is not bounded on (a, b), then its derivative f'(x) is not bounded on (a, b).
- (ii) Show that the converse to (i) does not hold, i.e. f(x) may be bounded on (a, b), while f'(x) is not bounded on (a, b).

- 5. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.
 - (i) Formulate the ϵ -criterion for Riemann integrability of f.
 - (ii) Prove that if f is Riemann integrable, then for every $\epsilon > 0$ there is a partition Δ of [a, b] such that $S(f, \Delta) s(f, \Delta) < \epsilon$.
 - (iii) Assume that f is continuous on [a, b]. Let $\alpha \in \mathbb{R}$. Show that the function

$$F(x) = \int_{a}^{x} \left(\int_{a}^{y} f(z) dz \right) dy + \alpha$$

is continuous on [a, b]. Show also that F and F' are differentiable on (a, b). (Here you may use the preparation theorem for the Fundamental Theorem of Calculus without proof.)

(iv) Let F from (iii) satisfy F(x) = 2006 for all $x \in [a, b]$. Show that f(x) = 0 for all $x \in [a, b]$ and that $\alpha = 2006$.