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1. Consider the linear programming problem

To maximise 5x1 − 2x2 + 3x3 ,
subject to x1 + x2 + x3 = 8, 3x1 + 2x2 − x3 ≤ 12,
with x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(i) Express the above as a linear programming problem in standard form using slack variables

and extra variables as needed to form a feasible basic set of variables giving a non-

degenerate starting vertex for applying the simplex algorithm.

(ii) Use the simplex algorithm as given in the course to obtain an optimal vertex and the

optimal value of the objective function. Show your working.

2. (i) Consider the constant-sum game between two players A and B who each have three pure

strategies with the matrix of payoffs

G = [gij ] =





b1 b2 b3

a1 0 1 2

a2 5 0 1

a3 1 2 1





The payment by B to A for simultaneous choices (ai, bj) is gij . Player A seeks to maximise

the payment by B, and B seeks to minimise the payment to A.

Consider the randomised strategies whereby B chooses from {b1, b2, b3} with probabilities
{x1, x2, x3} respectively, where x1 + x2 + x3 = 1. Similarly A chooses from {a1, a2, a3}
with probabilities {y1, y2, y3} respectively where y1 + y2 + y3 = 1.

(a) Express this as a pair of linear programming problems.

(b) Write these two linear programming problems in standard form.

(c) Explain briefly, without applying the simplex algorithm, why the randomised

strategies that give the optimal solution are {1
3
, 1
6
, 1
2
} for A and {1

6
, 1
3
, 1
2
} for B.

Give the optimal value.

(ii) Let v be a vertex of a graph G. Define the connected component G(v) of v.

For n > 1, give an example of each of the following.

(a) A graph with n vertices and one connected component;

(b) A graph with n vertices and n connected components.

We define a graph G to have vertices vectors v = (v1, v2, v3) where vi ∈ {0, 1, 2} for
i = 1, 2, 3, and there is an edge v −−w if and only if v1 + v2 + v3 = w1 + w2 + w3.

Find how many connected components G has, and find also the chromatic number of

the largest component.
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3. Let G be a simple connected graph. Write down what is meant by

(i) a Eulerian circuit in G;

(ii) a Hamiltonian circuit in G.

Show that G has a Eulerian circuit if and only if every vertex of G has even valency.

Let v1, . . . , vn be the vertices of G, and suppose that n ≥ 3. A new graph H is formed
by adding n new vertices w1, . . . , wn, and new edges as follows. There is an edge wi — wj
precisely when there is an edge vi— vj in G, and there are also n edges vi— wi , i = 1, . . . , n.

Decide, with reasoning, whether or not the following assertions are true. If an assertion is

sometimes true, you should describe the circumstances in which it is true.

(a) If G has a Hamiltonian circuit, then H has a Hamiltonian circuit.

(b) If G has a Hamiltonian path that is not a circuit, then H has a Hamiltonian circuit.

(c) If G has a Eulerian circuit, then H has a Eulerian trail that is not a circuit.

(d) If G has a Eulerian trail that is not a circuit, H has either a Eulerian trail or circuit.

4. Define

(i) a tree;

(ii) a spanning tree for a graph G.

Describe the Breadth First Search method for constructing a spanning tree of a simple

connected graph, and explain how it organises the vertices of the graph into layers.

Show that a simple connected graph is bipartite if and only if it contains no odd cycles.

Let G and H be the graphs given by the adjacency matrices below. Determine which (if any)

are bipartite. If a graph is not bipartite, find its chromatic number.

G :

















0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0

0 0 1 0 1 1 0 0

0 0 1 1 0 1 0 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 0

















H :

















0 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0

0 0 1 0 0 1 0 1

0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0
















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5. Let G be a network with a given capacity function k, and let f be a feasible flow on G. Define

the following terms.

(i) The value Val(f) of f .

(ii) A cut C = (L,R).

(iii) The capacity Kap(C) of a cut C.

State the Cut Conservation Lemma, and explain how this result leads to the inequality

Val(f) ≤ Kap(C)

for any feasible flow f and cut C.

Deduce that if we have a flow f ∗ and a cut C∗ with Val(f ∗) = Kap(C∗), then f ∗ is a maximal

flow and C∗ is a minimal cut.

The figure below is a network, with edge directions indicated by the arrows, and capacities

given in brackets. Starting with the zero flow, find a maximal flow in the network. [Give the

flow augmenting path that you use in each step.]

Confirm that your flow is maximal by finding the capacity of an appropriate cut.

(8) (2)

(4)

(7)

(6)
(3) (5)

(2)

(6)
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(3)

(7)
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