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1. For x, y ∈ R with x2 + y2 6= 0 and p, q ∈ {1, 2, ∙ ∙ ∙ , n} with p < q, let Gp,q(x, y) ∈ Rn×n

be such that

[Gp,q(x, y)]ij = δij i, j = 1→ n ,

except that [Gp,q(x, y)]pp = [Gp,q(x, y)]qq =
x

(x2 + y2)
1
2

and [Gp,q(x, y)]pq = −[Gp,q(x, y)]qp =
y

(x2 + y2)
1
2

.

Write down the components of Gp,q(x, y) r for any r ∈ Rn.

If rp = x and rq = y, what are the components of Gp,q(x, y) r ?

Show that Gp,q(x, y) is orthogonal.

Let

a1 =




9

12

0



 , a2 =




−6
−8
20



 and b =




300

600

900



 .

Use matrices of the type Gp,q(x, y) ∈ R3×3 to find x1, x2 ∈ R that minimises

‖b−
2∑

i=1

xi ai‖ ,

where ‖ ∙ ‖ is the standard norm on Rn.

Check your solution by solving the corresponding normal equations.

Find all d ∈ R3 such that

min
x1, x2∈R

‖d−
2∑

i=1

xi ai‖ = ‖d‖ .
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2. Let 〈∙, ∙〉 be the standard inner product on Rn, and ‖ ∙ ‖ = [ 〈∙, ∙〉 ]1/2 the associated norm.
Prove the Cauchy-Schwartz inequality

|〈a, b〉| ≤ ‖a‖ ‖b‖ ∀ a, b ∈ Rn,

with equality if and only if a and b are linearly dependent.

Let A =MTM , where M ∈ Rn×n has linearly independent columns. Show that

(i) A is symmetric positive definite,

(ii) Ajj > 0 j = 1→ n,

(iii) |Ajk| < (Ajj Akk )
1
2 j 6= k, j, k = 1→ n.

Define the Cholesky factorization of a symmetric positive definite matrix.

Show that |r s| ≤ 1
2
[ε r2 + ε−1s2] for all r, s ∈ R and for any ε > 0.

Use this result to show that




4 −6 2

−6 34 2

2 2 11





is positive definite.

Compute its Cholesky factorization.
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3. Write down the Lagrange and Newton forms of the polynomial pn(x) of degree ≤ n, which
interpolates the data {xi, f(xi)}ni=0, where the points xi ∈ [−1, 1] are distinct.

Establish that the interpolating polynomial is unique.

Show that for any x 6= xj, j = 0→ n,

f(x)− pn(x) = f [x0, x1, ∙ ∙ ∙ , xn, x]
n∏

j=0

(x− xj).

Show that if f ∈ Cn+1[−1, 1] then for all x ∈ [−1, 1] there exists a ξ ∈ [−1, 1], dependent
on x, such that

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏

i=0

(x− xi) .

If {xi}ni=0 are chosen to be the (n+ 1) zeroes of the Chebyshev polynomial

Tn+1(x) = cos( (n+ 1) cos
−1 x ) = 2n xn+1 + ∙ ∙ ∙ ,

show that

max
−1≤x≤1

|f(x)− pn(x)| ≤
2−n

(n+ 1)!
max
−1≤x≤1

|f (n+1)(x)| .

Approximation to e2x on [−1, 1] is required to an absolute accuracy of 10−2. With the
above choice of interpolation points, what is minimum degree of pn(x) which is guaranteed

to achieve this accuracy ?

If a continuous piecewise linear interpolating polynomial is used instead, with equally spaced

nodes yj = −1 +
2 j
J
, j = 0→ J , then what is the minimum value of J needed to achieve

the required accuracy ?

[ It is sufficient to note that e2 ≈ 7.4 ]
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4. The Chebyshev polynomial of degree j, j ≥ 0, is defined by

Tj(x) = cos(j(cos
−1 x)) ∀ x ∈ [−1, 1].

For j ≥ 1, derive the recurrence relation

Tj+1(x) + Tj−1(x) = 2 xTj(x).

Show that {Tj(x)}j≥0 is a set of orthogonal polynomials with respect to the inner product

〈f, g〉 =
∫ 1

−1
(1− x2)−

1
2 f(x) g(x) dx

on C[−1, 1]. In addition, show that

‖Tj‖
2 =

{
π
2

j ≥ 1 ,
π j = 0 ;

where ‖ ∙ ‖ = [〈∙, ∙〉]
1
2 is the associated norm on C[−1, 1].

Given f ∈ C[−1, 1], show that

p∗n(x) =
n∑

j=0

〈f, Tj〉
‖Tj‖2

Tj(x)

is such that

〈f − p∗n, pn〉 = 0 ∀ pn ∈ Pn, polynomials of degree ≤ n.

Hence show that

‖f − (p∗n + pn)‖
2 = ‖f − p∗n‖

2 + ‖pn‖
2 ∀ pn ∈ Pn ,

and so that p∗n is best approximation from Pn to f with respect to ‖ ∙ ‖.

In the case of f(x) = (1− x2)
1
2 x2, find p∗0, p

∗
1 and p

∗
2.
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5. For all f, g ∈ C[a, b] let

〈f, g〉 =
∫ b

a

w(x) f(x) g(x) dx ,

where w is a positive weight function. Let φ0(x) = 1, φ1(x) = x− α0 and

φn+1(x) = (x− αn)φn(x)− βn φn−1(x), n ≥ 1;

where

αn =
〈xφn, φn〉
〈φn, φn〉

, n ≥ 0, and βn =
〈φn, φn〉
〈φn−1, φn−1〉

, n ≥ 1 .

Prove, by induction or otherwise, that {φn(x)}n≥0 is a set of orthogonal monic polynomials,
φn ∈ Pn, with respect to 〈∙, ∙〉.

Assuming that φn+1(x) has n+ 1 distinct zeros {x∗i }
n
i=0 in [a, b], show that on choosing

ω∗i =

∫ b

a

w(x)
n∏

j=0, j 6=i

(x− x∗j)

(x∗i − x
∗
j)
dx, i = 0→ n,

then the quadrature formula

I∗n(f) =
n∑

i=0

ω∗i f(x
∗
i ) approximating I(f) =

∫ b

a

w(x) f(x) dx

is exact for any f ∈ P2n+1.

For the case [a, b] ≡ [0, 1] and w(x) = x−
1
4 construct I∗0 (f).
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