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1. (a) Use Givens rotations to compute the least squares solution x? of the overdetermined

linear system Ax = b, where

A =




1 0

0 4

1 −3
√
2



 , x =

(
x1
x2

)

and b =




0

10

5
√
2



 .

Calculate the error ‖Ax? − b‖, where ‖y‖ = (yTy)
1
2 .

Check your solution by solving the corresponding normal equations.

(b) For non-trivial u, v ∈ Rn, let B = I + u vT ∈ Rn×n, where I ∈ Rn×n is the identity
matrix. If vTu 6= −1, verify that

B−1 = I −
u vT

1 + vTu
.
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2. For a symmetric positive definite matrix A ∈ Rn×n, let

〈x, y〉A = x
TAy ∀ x, y ∈ Rn

be an inner product on Rn × Rn, with ‖ ∙ ‖A = [ 〈∙, ∙〉A ]
1
2 being the associated norm on

Rn. Prove the Cauchy-Schwartz inequality

|〈x, y〉A| ≤ ‖x‖A ‖y‖A ∀ x, y ∈ Rn,

with equality if and only if x and y are linearly dependent.

Let e1 = (1, 0, ∙ ∙ ∙ , 0)
T ∈ Rn. Show that

A−
(Ae1) (Ae1)

T

‖e1‖
2
A

=






0 ∙ ∙ ∙ 0
... B

0




 ,

where B ∈ R(n−1)×(n−1) is such that BT = B.

Let v = (0, uT )T ∈ Rn, where u ∈ Rn−1. Show that

uTB u = ‖v‖2A −
[ 〈v, e1〉A]

2

‖e1‖
2
A

.

Hence show that B is positive definite.

Define the Cholesky factorization of A.

Show that |r s| ≤ 1
2
[r2 + s2] ∀ r, s ∈ R.

Use this result to show that

A =




36 −18 6

−18 34 −13
6 −13 21





is positive definite.

Compute its Cholesky factorization.
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3. State the properties that a real-valued function 〈∙, ∙〉 on C[a, b] × C[a, b] must satisfy for
it to be an inner product.

Let ‖ ∙ ‖ be the induced norm. Then for j ≥ 0 let

φj(x) =
ψj(x)

‖ψj‖
,

where ψ0(x) = 1 and for j ≥ 1

ψj(x) = x
j −

j−1∑

i=0

〈xj, φi〉φi(x) .

Prove, using induction, that {φj(x)}j≥0 is a set of orthonormal polynomials with respect
to 〈∙, ∙〉.

Given f ∈ C[a, b] and λj ∈ R, j = 0→ n, show that

‖f −
n∑

j=0

λj φj‖
2 = ‖f‖2 +

n∑

j=0

[λ2j − 2λj 〈f, φj〉 ] .

Hence prove that

p?n(x) =
n∑

j=0

〈f, φj〉φj(x)

is the best approximation from Pn, polynomials of degree ≤ n, to f with respect to ‖ ∙ ‖;
i.e.

‖f − p?n‖ ≤ ‖f − pn‖ ∀ pn ∈ Pn ;

and that

〈f − p?n, pn〉 = 0 ∀ pn ∈ Pn .

In the case [a, b] ≡ [0, 1] and

〈f, g〉 =
∫ 1

0

x3 f(x) g(x) dx ∀ f, g ∈ C[0, 1];

find {φj(x)}1j=0, and hence the best approximation from P1 to x
2 with respect to ‖ ∙ ‖.
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4. Write down the Lagrange and Newton forms of the polynomial pn(z) of degree ≤ n, which

interpolates the data {zj, f(zj)}nj=0, where the points zj ∈ C are distinct.

Prove that this interpolating polynomial is unique.

Establish the recurrence relation for divided differences

f [z0, z1, ∙ ∙ ∙ , zj] =
f [z1, ∙ ∙ ∙ , zj]− f [z0, ∙ ∙ ∙ , zj−1]

zj − z0
, j = 1→ n,

where f [zj] = f(zj).

Discuss briefly the practical advantage of the Newton form.

Show that for any z 6= zj, j = 0→ n,

f(z) = pn(z) + f [z0, z1, ∙ ∙ ∙ , zn, z]
n∏

j=0

(z − zj) .

Let

zj = ω
j , j = 0→ n , where ω = e

2π i
n+1 ∈ C ;

that is {zj}nj=0 are the (n + 1)th distinct roots of unity. Given that the corresponding
Lagrange basis functions `j ∈ Pn, j = 0→ n, are

`0(z) =
1

n+ 1

(
zn+1 − 1
z − 1

)

≡
1

n+ 1

n∑

k=0

zk and `j(z) = `0(
z

ωj
) , j = 1→ n ;

show that

pn(z) =
zn+1 − 1
n+ 1

n∑

j=0

f(ωj)ωj

z − ωj
.
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5. Let f ∈ C[a, b]. Show that if a p?n ∈ Pn, polynomials of degree ≤ n, satisfies

f(xj)− p
?
n(xj) = (−1)

j σ E

at (n+ 2) distinct points a ≤ x0 < x1 < ∙ ∙ ∙ < xn < xn+1 ≤ b, where

E = ‖f − p?n‖∞ = max
a≤x≤b

|f(x)− p?n(x)|

and σ = 1 or −1, then

‖f − p?n‖∞ ≤ ‖f − pn‖∞ ∀ pn ∈ Pn .

Let qn ∈ Pn be such that
f(yj)− qn(yj) = (−1)

j ξj ,

where ξj has the same sign at each of the (n+ 2) distinct points

a ≤ y0 < y1 < ∙ ∙ ∙ < yn < yn+1 ≤ b .

By considering the sign of p?n − qn at {yj}
n+1
j=0 , show that

min
j=0→n+1

|ξj| ≤ E .

By considering q1(x) = x − c, where c > 0, and y0 = 0, y1 = 1
2
and y2 = 1; deduce that

the best approximation p?1 from P1 to f(x) = x
3 on [a, b] ⊇ [0, 1] satisfies

‖f − p?1‖∞ ≥
3

16
.
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