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1. Use Givens rotations to compute the least squares solution x? of the overdetermined linear

system Ax = b, where

A =







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
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

, x =

(
x1
x2

)

and b =


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



.

Calculate the error ‖Ax? − b‖.

Check your solution by solving the corresponding normal equations.

Find a d ∈ R4, d 6= 0, such that the least squares solution of the overdetermined linear
system Ay = d is y? = 0.

2. Let A ∈ Rn×n be a symmetric positive definite matrix. Show that

〈u, v〉A = u
TAv ∀ u, v ∈ Rn

is an inner product on Rn.

Assuming the Gram-Schmidt algorithm, show that there exists an invertible P ∈ Rn×n such
that A = P TP .

Define the Cholesky factorization of A.

Show that |r s| ≤ 1
2
[r2 + s2] ∀ r, s ∈ R.

Use this result to show that

A =




9 3 −3
3 5 1

−3 1 11





is positive definite.

Compute its Cholesky factorization.

Use this factorization to find A−1.
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3. Let V be a real vector space. State the properties that a real-valued function 〈∙, ∙〉 on
V × V must satisfy for it to be an inner product.

Let U be a subspace of V with basis {φi}ni=1. Given any v ∈ V , let

E(λ) = ‖v −
n∑

i=1

λi φi‖
2, where λ = (λ1, λ2, ∙ ∙ ∙ , λn)

T ∈ Rn

and ‖ ∙ ‖ = [〈∙, ∙〉]
1
2 . Show that

E(λ) = ‖v‖2 − 2λTμ+ λTGλ,

where μ ∈ Rn and G ∈ Rn×n are such that

μi = 〈v, φi〉 and Gij = 〈φi, φj〉, i, j = 1→ n.

Derive the following results.

(a) G is a symmetric positive definite matrix.

(b) There exists a unique λ? ∈ Rn such that Gλ? = μ.

(c) E(λ? + h) = E(λ?) + hTGh ≥ E(λ?) ∀ h ∈ Rn.

(d) u? =
n∑

i=1

λ?i φi ∈ U is such that 〈v − u
?, u〉 = 0 ∀ u ∈ U .

(e) E(λ?) = 〈v − u?, v〉.

Let V = C[0, 1] with inner product

〈f, g〉 =
∫ 1

0

x f(x) g(x) dx ∀ f, g ∈ C[0, 1].

Let U = P1, polynomials of degree ≤ 1, with basis {1, x}.

If v = 20 x2, find the corresponding u? and calculate E(λ?).
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4. Write down the Lagrange form of pn ∈ Pn, which interpolates the data {xi, f(xi)}ni=0,
where the points {xi}ni=0 are distinct.

Establish the following results.

(a) This interpolating polynomial is unique.

(b)
n∑

i=0

[
n∏

j=0, j 6=i

(
x− xj
xi − xj

)]

= 1 ∀ x ∈ R.

Write down the Newton form of pn and establish the following results.

(c) f [x0, x1, ∙ ∙ ∙ , xn] =
n∑

i=0

[

f(xi)
n∏

j=0, j 6=i

1

(xi − xj)

]

.

(d) For any x 6= xi, i = 0→ n,

f(x)− pn(x) = f [x0, x1, ∙ ∙ ∙ , xn, x]
n∏

j=0

(x− xj).

If f(x) = (α− x)−1 with α 6= xi, i = 0→ n, use the results above to show the following.

(e) f [x0, x1, ∙ ∙ ∙ , xn] =
n∏

j=0

1

(α− xj)
.

(f) For any x 6= α or xi, i = 0→ n,

f(x)− pn(x) =
1

(α− x)

n∏

j=0

(
x− xj
α− xj

)

.
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5. For all f, g ∈ C[−L,L] let

〈f, g〉 =
∫ L

−L
w(x) f(x) g(x) dx ,

where w ∈ C[−L,L] is a positive even weight function. Let φ0(x) = 1, φ1(x) = x and for
n ≥ 1

φn+1(x) = xφn(x)− βn φn−1(x), where βn =
〈φn, φn〉
〈φn−1, φn−1〉

.

Prove by induction that {φn(x)}n≥0 is a set of orthogonal monic polynomials, φn ∈ Pn,
with respect to 〈∙, ∙〉 such that φn is an even (odd) function if n is even (odd).

Assuming that φn+1(x) has n+1 distinct zeros {x?i }
n
i=0 ∈ [−L,L], show that on choosing

ω?i =

∫ L

−L
w(x)

[
n∏

j=0, j 6=i

(
x− x?j
x?i − x

?
j

)]

dx, i = 0→ n,

then the quadrature formula

I?n(f) =
n∑

i=0

ω?i f(x
?
i ) approximating I(f) =

∫ L

−L
w(x) f(x) dx

is exact for any f ∈ P2n+1.

For the case L = 1 and w(x) = 3 + 4 |x| construct the sampling points and the weights
for I?0 (f) and I

?
1 (f).
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