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1. For any non-singular A ∈ Rn×n and non-trivial u, v ∈ Rn, let B = (A+ u vT ).

If vT A−1 u 6= −1, verify that

B−1 = A−1 −
A−1 u vT A−1

1 + vT A−1 u
.

Find a u ∈ R3 such that

C =




4 −2 6

−2 10 −12
6 −12 54



 =




3 0 0

0 6 0

0 0 18



+ uuT .

Hence find C−1.

Using the above decomposition of C, show that C is positive definite.

Find a lower triangular L ∈ R3×3 with strictly positive diagonal elements such that
C = LLT .

Find L−1.

Write down the general formula for C−1 in terms of L−1.
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2. For x, y ∈ R with x2 + y2 6= 0 and p, q ∈ {1, 2, ∙ ∙ ∙ , n} with p < q, let Gp,q(x, y) ∈ Rn×n

be such that

[Gp,q(x, y)]ij = δij i, j = 1→ n ,

except that [Gp,q(x, y)]pp = [Gp,q(x, y)]qq =
x

(x2 + y2)
1
2

and [Gp,q(x, y)]pq = −[Gp,q(x, y)]qp =
y

(x2 + y2)
1
2

.

Write down the components of Gp,q(x, y) r for any r ∈ Rn.

If rp = x and rq = y, what are these components ?

Show that Gp,q(x, y) is orthogonal.

Let

a1 =








3

0

4

0







, a2 =








5

4

0

2
√
2








and b =








0

0

0

50
√
2







.

Use matrices of the type Gp,q(x, y) ∈ R4×4 to find x1, x2 ∈ R that minimises

‖b−
2∑

i=1

xi ai‖ .

Check your solution by solving the corresponding normal equations.
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3. Write down the Lagrange form of pn ∈ Pn, which interpolates the data {xi, fi}ni=0, where
the points {xi}ni=0 are distinct.

Establish that this interpolating polynomial is unique.

Let {yj}mj=0 be another set of distinct points: thus the (n + 1) (m + 1) distinct points in
the plane,

(xi, yj) i = 0→ n, j = 0→ m,

form a rectangular array aligned with the axes. Let Pn,m be the space of polynomials in two
variables of degree at most n in the first variable and of degree at most m in the second

variable, i.e. Pn,m consists of polynomials

n∑

i=0

m∑

j=0

ai,j x
i yj

for arbitrary constants ai,j i = 0→ n, j = 0→ m.

For i = 0→ n, j = 0→ m find `i,j(x, y) ∈ Pn,m such that

`i,j(xi, yj) = 1

and at the other (n+ 1) (m+ 1)− 1 points (xk, yl)

`i,j(xk, yl) = 0 .

Given data values zi,j ∈ R, i = 0→ n, j = 0→ m; prove that there exists a pn,m ∈ Pn,m
such that

pn,m(xi, yj) = zi,j i = 0→ n, j = 0→ m.

By using the fact that any element of Pn,m can be written in the form

n∑

k=0

bk(y) x
k

where each bk ∈ Pm, prove that the interpolating pn,m above is unique.

Find p1,1 ∈ P1,1 that interpolates a continuous function g(x, y) at the points (−1,−1),
(−1, 1), (1,−1) and (1, 1).

Is this interpolation problem guaranteed to be well-posed if we choose any four distinct

points in the plane, not necessarily in a rectangular array aligned with the axes ?

Is it well-posed for the the points (−1, 0), (0,−1), (0, 1) and (1, 0) ?
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4. Let f ∈ C[a, b]. Show that if a p?n ∈ Pn, polynomials of degree ≤ n, satisfies

f(xj)− p
?
n(xj) = (−1)

j σ E

at (n+ 2) distinct points a ≤ x0 < x1 < ∙ ∙ ∙ xn < xn+1 ≤ b, where

E = ‖f − p?n‖∞ = max
a≤x≤b

|f(x)− p?n(x)|

and σ = 1 or −1, then

‖f − p?n‖∞ ≤ ‖f − pn‖∞ ∀ pn ∈ Pn .

State the Chebyshev equioscillation theorem.

Let [a, b] ≡ [−d, d], f be an even function, and p?n be the best approximation to f from
Pn in ‖ ∙ ‖∞ on [−d, d]. By considering f(x)− p?n(−x), use the equioscillation theorem to
deduce that p?n is an even function.

Hence find p?1 for f(x) = (4− x
2)
1
2 on [−2, 2].

Compare this to the best approximation to f from P1 with respect to the norm

‖g‖ =

(∫ 2

−2
[g(x)]2 dx

) 1
2

.
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5. State the properties that a real-valued function 〈∙, ∙〉 on C[a, b] × C[a, b] must satisfy for
it to be an inner product.

Prove the Cauchy-Schwartz inequality

|〈f, g〉| ≤ ‖f‖ ‖g‖ ∀ f, g ∈ C[a, b],

where ‖ ∙ ‖ = [ 〈∙, ∙〉 ]1/2 is the associated norm on C[a, b].

The Chebyshev polynomial of degree n, n ≥ 0, is defined by

Tn(x) = cos(n(cos
−1 x)) ∀ x ∈ [−1, 1].

For n ≥ 1, derive the recurrence relation

Tn+1(x) + Tn−1(x) = 2 xTn(x) .

Show that {Tn(x)}n≥0 is a set of orthogonal polynomials with respect to the inner product

〈f, g〉 =
∫ 1

−1
(1− x2)−

1
2 f(x) g(x) dx.

Let

I(f) =

∫ 1

−1
(1− x2)−

1
2 f(x) dx .

Find the sampling points {xi}2i=0 ∈ [−1, 1] and the weights {wi}
2
i=0 so that

I1(f) = w0 f(x0) and I3(f) = w1 f(x1) + w2 f(x2)

are such that In(f) = I(f) ∀ f ∈ Pn .
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