UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/N	ASci EXA	MINATION	(MATHEMATICS)	MAY-JUNE	2003

This paper is also taken for the relevant examination for the Associateship

M2N1 NUMERICAL ANALYSIS

DATE: ? TIME: ?

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

M2N1: Page 1 of 6

Calculators may not be used.

1. (a) Use Givens rotations to compute the least squares solution of the overdetermined linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ 4 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix}.$$

Calculate the error $||A\mathbf{x} - \mathbf{b}||$.

Check your solution by solving the corresponding normal equations.

(b) Let $\mathbf{u} \in \mathbb{R}^n$ with $\|\mathbf{u}\| = 1$. Define

$$P = I - 2 \mathbf{u} \mathbf{u}^T \in \mathbb{R}^{n \times n}.$$

Prove that P is a symmetric orthogonal matrix such that

$$\begin{aligned} & \text{(i)} \quad P\,\mathbf{u} = -\mathbf{u}\,,\\ & \text{and} \quad \text{(ii)} \quad P\,\mathbf{v} = \quad \mathbf{v} \qquad \forall \ \mathbf{v} \in \mathbb{R}^n \quad \text{with} \quad \mathbf{v}^T\mathbf{u} = 0\,. \end{aligned}$$

Find $\sum_{i=1}^{n} P_{ii}$.

2. State the properties that a real-valued function $\langle \cdot, \cdot \rangle$ on $\mathbb{R}^n \times \mathbb{R}^n$ must satisfy for it to be an inner product.

Let $\|\cdot\| = [\langle \cdot, \cdot \rangle]^{1/2}$ be the associated norm on \mathbb{R}^n . Prove the Cauchy-Schwartz inequality

$$|\langle \mathbf{a}, \mathbf{b} \rangle| \le \|\mathbf{a}\| \|\mathbf{b}\| \qquad \forall \ \mathbf{a}, \ \mathbf{b} \in \mathbb{R}^n,$$

with equality if and only if **a** and **b** are linearly dependent.

Let $A = M^T M$, where $M \in \mathbb{R}^{n \times n}$ has linearly independent columns. Show that

- A is symmetric positive definite,
- (ii) $A_{jj} > 0$ $j = 1 \to n,$ (iii) $|A_{jk}| < (A_{jj} A_{kk})^{\frac{1}{2}}$ $j \neq k, \quad j, k = 1 \to n.$

Define the Cholesky factorization of a symmetric positive definite matrix.

Assuming that

$$\left[\begin{array}{ccc}
4 & 2 & 6 \\
2 & 10 & 0 \\
6 & 0 & 35
\end{array}\right]$$

is positive definite, compute its Cholesky factorization.

3. Let $x_0 < x_1 < \cdots < x_{n-1} < x_n$ and $f \in C[x_0, x_n]$. Write down the Newton form of the polynomial $p_n(x)$ of degree $\leq n$, which interpolates the data $\{x_i, f(x_i)\}_{i=0}^n$.

Establish the recurrence relation for divided differences

$$f[x_0, x_1, \dots, x_j] = \frac{f[x_1, \dots, x_j] - f[x_0, \dots, x_{j-1}]}{x_j - x_0}$$
 $j = 1 \to n$

where $f[x_j] = f(x_j)$.

Show that for any $x \neq x_j$, $j = 0 \rightarrow n$,

$$f(x) = p_n(x) + f[x_0, x_1, \dots, x_n, x] \prod_{j=0}^{n} (x - x_j).$$

If $f \in C^n(\mathbb{R})$, show that

$$f[x_0, x_1, \cdots, x_j] = \frac{f^{(j)}(\xi_j)}{j!}, \qquad j = 1 \to n,$$

where $\xi_j \in (x_0, x_j)$.

For the case $f(x) = e^{-x}$, show that

$$(-1)^j f[x_0, x_1, \cdots, x_j] \ge 0, \qquad j = 0 \to n,$$

and

$$0 \le p_n(x) \le f(x) \qquad \forall \ x < x_0.$$

4. Let $f \in C[a,b]$. Show that if a $p_n^* \in \mathbb{P}_n$, polynomials of degree $\leq n$, satisfies

$$f(x_i) - p_n^{\star}(x_i) = (-1)^j \sigma E$$

at (n+2) distinct points $a \le x_0 < x_1 < \cdots < x_n < x_{n+1} \le b$, where

$$E = \|f - p_n^{\star}\|_{\infty} = \max_{a \le x \le b} |f(x) - p_n^{\star}(x)|$$

and $\sigma = 1$ or -1, then

$$||f - p_n^{\star}||_{\infty} \le ||f - p_n||_{\infty} \quad \forall p_n \in \mathbb{P}_n.$$

The Chebyshev polynomial of degree $n, n \geq 0$, is defined by

$$T_n(x) = \cos(n(\cos^{-1} x)) \quad \forall \ x \in [-1, 1].$$

For $n \geq 1$, derive the recurrence relation

$$T_{n+1}(x) + T_{n-1}(x) = 2 x T_n(x).$$

For $n \geq 1$, prove that the coefficient of x^n in $T_n(x)$ is 2^{n-1} .

Let $[a,b] \equiv [-1,1]$. Show that the best approximation to x^{n+1} by \mathbb{P}_n in $\|\cdot\|_{\infty}$ is $p_n^{\star}(x) = x^{n+1} - 2^{-n} T_{n+1}(x)$.

Hence calculate explicitly the best approximation to x^3 by \mathbb{P}_2 and the corresponding $\|\cdot\|_{\infty}$ error.

5. For all $f, g \in C[a, b]$ let

$$\langle f, g \rangle = \int_a^b w(x) f(x) g(x) dx,$$

where w is a positive weight function. Let $\phi_0(x) = 1$, $\phi_1(x) = x - a_0$ and

$$\phi_{n+1}(x) = (x - a_n) \phi_n(x) - b_n \phi_{n-1}(x), \qquad n \ge 1$$

where

$$a_n = \frac{\langle x\phi_n, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}, \quad n \ge 0, \quad \text{and} \quad b_n = \frac{\langle \phi_n, \phi_n \rangle}{\langle \phi_{n-1}, \phi_{n-1} \rangle}, \quad n \ge 1.$$

Prove that $\{\phi_n(x)\}_{n\geq 0}$ is a set of orthogonal monic polynomials, $\phi_n \in \mathbb{P}_n$, with respect to $\langle \cdot, \cdot \rangle$.

Assuming that $\phi_{n+1}(x)$ has n+1 distinct zeros $\{x_i\}_{i=0}^n$, show that on choosing

$$\omega_i = \int_a^b w(x) \prod_{j=0, j \neq i}^n \frac{(x - x_j)}{(x_i - x_j)} dx, \qquad i = 0 \to n,$$

then the quadrature formula

$$\sum_{i=0}^{n} \omega_i f(x_i) \qquad \text{approximating} \qquad \int_a^b w(x) f(x) dx$$

is exact for any $f \in \mathbb{P}_{2n+1}$.

For the case $[a, b] \equiv [0, 1]$ and $w(x) = x^{-\frac{1}{2}}$ construct a one point quadrature formula, which is exact for any $f \in \mathbb{P}_1$.