UNIVERSITY OF LONDON

# IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

## BSc/MSci EXAMINATION(MATHEMATICS) MAY-JUNE 2003

This paper is also taken for the relevant examination for the Associateship

M2N1 NUMERICAL ANALYSIS

DATE : ?
TIME : ?

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. (a) Use Givens rotations to compute the least squares solution of the overdetermined linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ll}
3 & 2 \\
0 & 1 \\
4 & 1
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{r}
-2 \\
1 \\
4
\end{array}\right] .
$$

Calculate the error $\|A \mathbf{x}-\mathbf{b}\|$.

Check your solution by solving the corresponding normal equations.
(b) Let $\mathbf{u} \in \mathbb{R}^{n}$ with $\|\mathbf{u}\|=1$. Define

$$
P=I-2 \mathbf{u} \mathbf{u}^{T} \in \mathbb{R}^{n \times n}
$$

Prove that $P$ is a symmetric orthogonal matrix such that
(i) $P \mathbf{u}=-\mathbf{u}$,
and (ii) $P \mathbf{v}=\mathbf{v} \quad \forall \mathbf{v} \in \mathbb{R}^{n}$ with $\mathbf{v}^{T} \mathbf{u}=0$.

Find $\sum_{i=1}^{n} P_{i i}$.
2. State the properties that a real-valued function $\langle\cdot, \cdot\rangle$ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ must satisfy for it to be an inner product.

Let $\|\cdot\|=[\langle\cdot, \cdot\rangle]^{1 / 2}$ be the associated norm on $\mathbb{R}^{n}$. Prove the Cauchy-Schwartz inequality

$$
|\langle\mathbf{a}, \mathbf{b}\rangle| \leq\|\mathbf{a}\|\|\mathbf{b}\| \quad \forall \mathbf{a}, \mathbf{b} \in \mathbb{R}^{n},
$$

with equality if and only if $\mathbf{a}$ and $\mathbf{b}$ are linearly dependent.

Let $A=M^{T} M$, where $M \in \mathbb{R}^{n \times n}$ has linearly independent columns. Show that
(i) $\quad A$ is symmetric positive definite,
(ii) $A_{j j}>0$
$j=1 \rightarrow n$,
(iii) $\left|A_{j k}\right|<\left(A_{j j} A_{k k}\right)^{\frac{1}{2}}$
$j \neq k, \quad j, k=1 \rightarrow n$.

Define the Cholesky factorization of a symmetric positive definite matrix.

Assuming that

$$
\left[\begin{array}{rrr}
4 & 2 & 6 \\
2 & 10 & 0 \\
6 & 0 & 35
\end{array}\right]
$$

is positive definite, compute its Cholesky factorization.
3. Let $x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}$ and $f \in C\left[x_{0}, x_{n}\right]$. Write down the Newton form of the polynomial $p_{n}(x)$ of degree $\leq n$, which interpolates the data $\left\{x_{i}, f\left(x_{i}\right)\right\}_{i=0}^{n}$.

Establish the recurrence relation for divided differences

$$
f\left[x_{0}, x_{1}, \cdots, x_{j}\right]=\frac{f\left[x_{1}, \cdots, x_{j}\right]-f\left[x_{0}, \cdots, x_{j-1}\right]}{x_{j}-x_{0}} \quad j=1 \rightarrow n,
$$

where $f\left[x_{j}\right]=f\left(x_{j}\right)$.
Show that for any $x \neq x_{j}, j=0 \rightarrow n$,

$$
f(x)=p_{n}(x)+f\left[x_{0}, x_{1}, \cdots, x_{n}, x\right] \prod_{j=0}^{n}\left(x-x_{j}\right) .
$$

If $f \in C^{n}(\mathbb{R})$, show that

$$
f\left[x_{0}, x_{1}, \cdots, x_{j}\right]=\frac{f^{(j)}\left(\xi_{j}\right)}{j!}, \quad j=1 \rightarrow n
$$

where $\xi_{j} \in\left(x_{0}, x_{j}\right)$.

For the case $f(x)=e^{-x}$, show that

$$
(-1)^{j} f\left[x_{0}, x_{1}, \cdots, x_{j}\right] \geq 0, \quad j=0 \rightarrow n,
$$

and

$$
0 \leq p_{n}(x) \leq f(x) \quad \forall x<x_{0}
$$

4. Let $f \in C[a, b]$. Show that if a $p_{n}^{\star} \in \mathbb{P}_{n}$, polynomials of degree $\leq n$, satisfies

$$
f\left(x_{j}\right)-p_{n}^{\star}\left(x_{j}\right)=(-1)^{j} \sigma E
$$

at ( $n+2$ ) distinct points $a \leq x_{0}<x_{1}<\cdots x_{n}<x_{n+1} \leq b$, where

$$
E=\left\|f-p_{n}^{\star}\right\|_{\infty}=\max _{a \leq x \leq b}\left|f(x)-p_{n}^{\star}(x)\right|
$$

and $\sigma=1$ or -1 , then

$$
\left\|f-p_{n}^{\star}\right\|_{\infty} \leq\left\|f-p_{n}\right\|_{\infty} \quad \forall p_{n} \in \mathbb{P}_{n}
$$

The Chebyshev polynomial of degree $n, n \geq 0$, is defined by

$$
T_{n}(x)=\cos \left(n\left(\cos ^{-1} x\right)\right) \quad \forall x \in[-1,1] .
$$

For $n \geq 1$, derive the recurrence relation

$$
T_{n+1}(x)+T_{n-1}(x)=2 x T_{n}(x)
$$

For $n \geq 1$, prove that the coefficient of $x^{n}$ in $T_{n}(x)$ is $2^{n-1}$.

Let $[a, b] \equiv[-1,1]$. Show that the best approximation to $x^{n+1}$ by $\mathbb{P}_{n}$ in $\|\cdot\|_{\infty}$ is $p_{n}^{\star}(x)=x^{n+1}-2^{-n} T_{n+1}(x)$.

Hence calculate explicitly the best approximation to $x^{3}$ by $\mathbb{P}_{2}$ and the corresponding $\|\cdot\|_{\infty}$ error.
5. For all $f, g \in C[a, b]$ let

$$
\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) d x
$$

where $w$ is a positive weight function. Let $\phi_{0}(x)=1, \phi_{1}(x)=x-a_{0}$ and

$$
\phi_{n+1}(x)=\left(x-a_{n}\right) \phi_{n}(x)-b_{n} \phi_{n-1}(x), \quad n \geq 1 ;
$$

where

$$
a_{n}=\frac{\left\langle x \phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle}, \quad n \geq 0, \quad \text { and } \quad b_{n}=\frac{\left\langle\phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n-1}, \phi_{n-1}\right\rangle}, \quad n \geq 1
$$

Prove that $\left\{\phi_{n}(x)\right\}_{n \geq 0}$ is a set of orthogonal monic polynomials, $\phi_{n} \in \mathbb{P}_{n}$, with respect to $\langle\cdot, \cdot\rangle$.

Assuming that $\phi_{n+1}(x)$ has $n+1$ distinct zeros $\left\{x_{i}\right\}_{i=0}^{n}$, show that on choosing

$$
\omega_{i}=\int_{a}^{b} w(x) \prod_{j=0, j \neq i}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} d x, \quad i=0 \rightarrow n
$$

then the quadrature formula

$$
\sum_{i=0}^{n} \omega_{i} f\left(x_{i}\right) \quad \text { approximating } \quad \int_{a}^{b} w(x) f(x) d x
$$

is exact for any $f \in \mathbb{P}_{2 n+1}$.
For the case $[a, b] \equiv[0,1]$ and $w(x)=x^{-\frac{1}{2}}$ construct a one point quadrature formula, which is exact for any $f \in \mathbb{P}_{1}$.

