UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

BSc/MSci EXAMINATION(MATHEMATICS) MAY-JUNE 2002

This paper is also taken for the relevant examination for the Associateship

M2N1 NUMERICAL ANALYSIS

 $DATE: Monday \ 20 \ May \ 2002 \qquad TIME: 2.00 pm - 4.00 pm$

Credit will be given for all questions attempted, but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

 $\bigodot University of London 2002$

M2N1: Page 1 of 5

1. Use Given's rotations to compute the least squares solution of the overdetermined linear system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & -8\\ 2 & -1\\ 2 & 14 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 4\\ 35\\ -1 \end{bmatrix}.$$

Calculate the error $||A\mathbf{x} - \mathbf{b}||$.

Check your solution by solving the corresponding normal equations.

2. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix.

Show that

$$\langle \mathbf{u}, \, \mathbf{v} \rangle_A = \mathbf{u}^T A \, \mathbf{v} \qquad \forall \, \mathbf{u}, \, \mathbf{v} \in \mathbb{R}^n$$

is an inner product on \mathbb{R}^n .

Assuming the Gram-Schmidt algorithm, show that A has a Cholesky factorization; that is, there exists a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ with strictly positive diagonal elements such that $A = L L^T$.

Assuming that

$$\left[\begin{array}{rrrr} 4 & -10 & 2 \\ -10 & 34 & -17 \\ 2 & -17 & 18 \end{array}\right]$$

is positive definite, compute its Cholesky factorization.

Use this factorization, to solve the linear system

$$\begin{bmatrix} 4 & -10 & 2 \\ -10 & 34 & -17 \\ 2 & -17 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 7 \\ 22 \end{bmatrix}$$

M2N1: Page 2 of 5 $\,$

3. State the properties that a real-valued function $\langle \cdot, \cdot \rangle$ on $C[a, b] \times C[a, b]$ must satisfy for it to be an inner product.

Prove the Cauchy-Schwartz inequality

$$|\langle f, g \rangle| \le ||f|| ||g|| \qquad \forall f, g \in C[a, b],$$

where $\|\cdot\| = [\langle \cdot, \cdot \rangle]^{1/2}$ is the associated norm on C[a, b].

For $j \ge 0$ let

$$\phi_j(x) = \psi_j(x) / \|\psi_j\|,$$

where $\psi_0(x) = 1$ and for $j \ge 1$

$$\psi_j(x) = x^j - \sum_{i=0}^{j-1} \langle x^j, \phi_i \rangle \phi_i(x) \,.$$

Prove, using induction, that $\{\phi_j(x)\}_{j\geq 0}$ is a set of orthonormal polynomials with respect to $\langle \cdot, \cdot \rangle$.

Given $f \in C[a, b]$, prove that

$$p_n^{\star}(x) = \sum_{j=0}^n \langle f, \phi_j \rangle \phi_j(x)$$

is the best approximation from \mathbb{P}_n , polynomials of degree $\leq n$, to f with respect to $\|\cdot\|$; i.e.

$$\|f - p_n^\star\| \le \|f - p_n\| \qquad \forall \ p_n \in \mathbb{P}_n \,.$$

In the case $[a, b] \equiv [0, 1]$ and

$$\langle f, g \rangle = \int_0^1 f(x) g(x) dx \qquad \forall f, g \in C[0, 1];$$

find the best approximation from \mathbb{P}_1 to x^2 with respect to $\|\cdot\|$.

M2N1: Page 3 of 5

4. Write down the Lagrange and Newton forms of the polynomial $p_n(x)$ of degree $\leq n$, which interpolates the data $\{x_i, f(x_i)\}_{i=0}^n$, where the points $x_i \in [-1, 1]$ are distinct. Discuss briefly the advantage of the Newton form.

Establish that the interpolating polynomial is unique and that if $f \in C^{n+1}[-1, 1]$ then for all $x \in [-1, 1]$ there exists a $\xi \in [-1, 1]$, dependent on x, such that

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^n (x - x_i).$$

Let $\{x_i\}_{i=0}^n$ be the (n+1) zeroes of the Chebyshev polynomial

$$T_{n+1}(x) = \cos((n+1)\cos^{-1}x) = 2^n x^{n+1} + \cdots$$

Show that

$$\max_{-1 \le x \le 1} |f(x) - p_n(x)| \le \frac{2^{-n}}{(n+1)!} \max_{-1 \le x \le 1} |f^{(n+1)}(x)|.$$

Approximation to e^{2x} on [-1,1] is required to an absolute accuracy of 10^{-2} . With the above choice of interpolation points, what is minimum degree of $p_n(x)$ which is guaranteed to achieve this accuracy ?

[Note that $e^2 \leq 7.4$]

M2N1: Page 4 of 5

5. Let $f \in C[a, b]$. Show that if a $p_n^* \in \mathbb{P}_n$, polynomials of degree $\leq n$, satisfies

$$f(x_j) - p_n^\star(x_j) = (-1)^j \,\sigma \,E$$

at (n+2) distinct points $a \le x_0 < x_1 < \cdots < x_n < x_{n+1} \le b$, where

$$E = \|f - p_n^{\star}\|_{\infty} = \max_{a \le x \le b} |f(x) - p_n^{\star}(x)|$$

and $\sigma = 1$ or -1, then

$$||f - p_n^\star||_{\infty} \le ||f - p_n||_{\infty} \quad \forall p_n \in \mathbb{P}_n.$$

Let $q_n \in \mathbb{P}_n$ be such that

$$f(y_j) - q_n(y_j) = (-1)^j \xi_j$$
,

where ξ_j has the same sign at each of the (n+2) distinct points

$$a \leq y_0 < y_1 < \cdots > y_n < y_{n+1} \leq b$$
.

By considering the sign of $q_n - p_n^{\star}$ at $\{y_j\}_{j=0}^{n+1}$ show that

$$\min_{j=0,\,1,\cdots,n+1}|\xi_j|\leq E\,.$$

By considering $q_1(x) = x + 0.1$, deduce that the best approximation p_1^* to $f(x) = x^{\frac{1}{2}}$ on [0, 1] satisfies

$$||f - p_1^{\star}||_{\infty} \ge 0.1$$
.

M2N1: Page 5 of 5