1. Consider the ODE

$$Ly \equiv x^2y'' - 2xy' + (2+x^2)y = x^3 \tag{1}$$

- (i) Show that $y = x \cos x$ is a solution to the homogenous equation Ly = 0.
- (ii) Evaluate the Wronskian for (1), and hence find a second solution to the equation Ly = 0.
- (iii) Construct a Green's function for (1) appropriate for an *initial* value problem $y(1) = \alpha$ and $y'(1) = \beta$, and hence find the solution for the case $\alpha = \beta = 0$.

2. Find the general series solution about x = 0 for the equation

$$(1 - x^2)y'' - 3xy' + \lambda y = 0$$

where λ is a real constant.

- (i) Show that the solution has two parts, one even and one odd in x.
- (ii) What is the radius of convergence for either series?
- (iii) Determine the eigenvalues λ for which one or other series terminates as a polynomial. Call these $y_n(x)$, indicating a polynomial degree n, and write down the form for $y_0(x)$, $y_1(x)$, $y_2(x)$ and $y_3(x)$, in each case to within an arbitrary constant.
- (iv) Rewrite the equation in Sturm-Liouville form and hence deduce the orthogonality relation between the eigenfunctions.

3. The Fourier Transform of the function f(x) is defined by

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx.$$

State the inverse transform which expresses f(x) in terms of $\hat{f}(k)$. The function f(x) is defined by

$$f(x) = \begin{array}{cc} e^{-x}, & x > 0 \\ 0, & x < 0 \end{array} .$$

- (i) Find $\hat{f}(k)$.
- (ii) Use the convolution theorem to find the function p(x) which satisfies the integral equation

$$\int_0^\infty f(y)p(x-y)dy = x^2 f(x).$$

4. The function f(x) is defined as follows

$$f(x) = x^2, -\pi < x < \pi$$

 $f(x+2\pi) = f(x).$

Show that, in $-\pi < x < \pi$

$$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx.$$

By differentiating and integration this series, infer the Fourier series of

- (i) x, $-\pi < x < \pi$
- (ii) x^3 , $-\pi < x < \pi$.

Finally, by considering a suitable value for x in the Fourier Series for x^2 , show that

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

5. The function $u(r, \theta, t)$ satisfies the diffusion equation

$$\nabla^2 u = \partial u / \partial t$$

within the disc r < a for time t > 0. It is nonsingular at the origin and takes the value

$$u(a, \theta, t) = 0$$

on the boundary r = a.

Using the method of separation of variables,

(i) Show that the eigenfunctions have the structure

$$J_n(\lambda_{nm}r)\sin(n\theta+\phi_n)e^{-\lambda_{nm}^2t}$$

where all terms are to be defined.

(ii) If, at time $t = 0, u(r, \theta, 0)$ is taken to be

$$u(r,\theta,0)=a-r,$$

show that for subsequent times $u(r, \theta, t)$ can be written

$$u(r, heta, t) = \sum_{m=0}^{\infty} c_m J_0(\lambda_m r) e^{-\lambda_m^2 t}$$

where c_m and λ_m are to be defined, but are not to be explicitly calculated.

What is the asymptotic behaviour of the solution as $t \to \infty$?

[You may quote without proof the following expression for the Laplacian of u in circular polars:

$$\nabla^2 u \equiv \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$