Imperial College London

UNIVERSITY OF LONDON BSc and MSci EXAMINATIONS (MATHEMATICS)

May-June 2006

This paper is also taken for the relevant examination for the Associateship.

M2M2

Differential Equations

Date: Tuesday, 9th May 2006 Time: 10 am - 12 noon

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

1. The differential operator L is defined by

$$
L y \equiv x y^{\prime \prime}-2 y^{\prime}+\left(x+\frac{2}{x}\right) y
$$

(i) Show that $y(x)=x \sin x$ is a solution to the homogenous equation $L y=0$.
(ii) Find the Wronskian $W(x)$ for any linearly independent pair of solutions y_{1}, y_{2} of the equation $L y=0$.
(iii) Construct a Green's function appropriate for a boundary value problem where the Green's function vanishes at $x=\frac{\pi}{2}$ and $x=\pi$.
(iv) Use the Green's function to solve the equation

$$
L y=x^{2}, \quad \frac{\pi}{2} \leq x \leq \pi
$$

with

$$
y\left(\frac{\pi}{2}\right)=1, \quad y(\pi)=0
$$

2. Find two series solutions about $x=0$ for the equation

$$
y^{\prime \prime}-x y^{\prime}+\lambda y=0
$$

where λ is a constant.
What is the radius of convergence for each solution?
Determine the eigenvalues λ for which one or other series terminates as a polynomial; call such solutions the eigenfunction solutions $p_{\lambda}(x)$.
Rewrite the differential equation in Sturm-Liouville form, and hence deduce the orthogonality relation between the eigenfunction solutions.
3. The function $f(x)$ is defined as follows:

$$
\begin{aligned}
f(x) & =e^{x}, \quad 0 \leq x \leq \pi, \\
f(x) & =f(-x), \\
f(x+2 \pi) & =f(x) .
\end{aligned}
$$

and
and
Plot the function $f(x)$ over the range $-2 \pi<x<2 \pi$.
Show that the Fourier series for $f(x)$ is

$$
f(x)=\frac{e^{\pi}-1}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} e^{\pi}-1}{1+n^{2}} \cos n x .
$$

By considering particular values of $x=0$ and $x=\pi$, deduce that

$$
\tanh \left(\frac{\pi}{2}\right)=\frac{4}{\pi}\left(\frac{1}{2}+\frac{1}{10}+\frac{1}{26}+\ldots\right)
$$

4. The Fourier Transform of the function $f(x)$ is defined by

$$
\widehat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

State the inverse transform which defines $f(x)$ in terms of $\widehat{f}(k)$.
The function $f(x)$ is defined as

$$
f(x)= \begin{cases}\frac{1}{2} e^{-x} & , \quad x>0 \\ \frac{1}{2} e^{x} & , \quad x<0\end{cases}
$$

Find $\widehat{f}(k)$.
State the convolution theorem and use it to evaluate the integral

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{\left(1+k^{2}\right)^{2}} e^{i k x} d k
$$

5. A uniform material with a spherical hole of radius a has an axisymmetric temperature distribution governed by Laplace's equation

$$
\nabla^{2} T=0, \quad r \geq a
$$

together with the boundary condition that $T(a, \theta)=\sin \theta$ on $r=a$, and $T(r, \theta) \rightarrow 0$ as $r \rightarrow \infty$.

Using the method of separation of variables as appropriate for spherical polar coordinates, show that the required solution is

$$
T(r, \theta)=\frac{2}{3} \frac{a}{r}\left(1-\frac{a^{2}}{r^{2}} P_{2}(\cos \theta)\right)
$$

where $P_{2}(\cos \theta)$ is a Legendre polynomial.
[You may quote without proof the axisymmetric form of the operator ∇^{2} :

$$
\nabla^{2} \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) .
$$

Legendre's equation for $y(x)$ is

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+l(l+1) y=0
$$

and has the polynomial solutions $P_{l}(x)$.]

