1. The differential operator L is defined by

$$
L y \equiv y^{\prime \prime}-2 y^{\prime}+\left(1-\frac{2}{x^{2}}\right) y
$$

in $1<x<\infty$.
(a) Show that $y(x)=x^{2} e^{x}$ is a solution to the homogenous equation $L y=0$.
(b) Find a Wronskian for the equation $L y=0$ and hence construct a second solution to the homogenous equation.
(c) Using a Green's Function as appropriate for an initial value problem, solve

$$
L y=x e^{x}
$$

with $y(1)=y^{\prime}(1)=0$.
2. Consider the 2nd order homogenous ODE

$$
x y^{\prime \prime}+(1-x) y^{\prime}+k y=0 .
$$

(a) Show that it has a regular singular point at $x=0$.
(b) Find one power series solution to the ODE about the point $x=0$, which is finite at $x=0$.
(c) What is the radius of convergence of the series solution?
(d) Determine the values of the parameter $k,=\nu$ say, for which the series terminates as a polynomial; call such solutions $L_{\nu}(x)$.
(e) Rewrite the ODE in Sturm-Liouville form and hence deduce an orthogonality relationship for the different polynomial solutions L_{ν} and $L_{\mu}(x), \nu \neq \mu$.
3. Using the complex form of the Fourier series, show that for $0<x<2 \pi$

$$
e^{x}=\frac{1}{2 \pi}\left(e^{2 \pi}-1\right) \sum_{n=-\infty}^{\infty} \frac{e^{i n x}}{1-i n}
$$

By considering a particular value of x, deduce that

$$
\begin{aligned}
\pi \operatorname{coth} \pi & =\pi \frac{\left(e^{2 \pi}+1\right)}{e^{2 \pi}-1} \\
& =1+2 \sum_{n=1}^{\infty} \frac{1}{1+n^{2}}
\end{aligned}
$$

Similarly, show that a second choice for x leads to the result

$$
\pi \operatorname{cosech} \pi=1+2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{1+n^{2}}
$$

4. The Fourier Transform of the function $f(x)$ is defined by

$$
\widehat{f}(k)=\int_{-\infty}^{\infty} f(x) e^{-i k x} d x
$$

State the inverse transform which defines $f(x)$ in terms of $\widehat{f}(k)$.
The function $f(x)$ is defined as

$$
f(x)= \begin{cases}e^{-x} & \text { for } x>0 \\ -e^{x} & \text { for } x<0\end{cases}
$$

(a) Find $\widehat{f}(k)$.
(b) Use the convolution theorem to find the function $g(x)$ which satisfies

$$
\int_{-\infty}^{\infty} f(y) g(x-y) d y=x g(x)
$$

and takes the value $g(0)=1 / 2$.
5. A uniform sphere has an axisymmetric temperature distribution $T(r, \theta)$ governed by Laplace's equation

$$
\nabla^{2} T=0, \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq \pi,
$$

together with a boundary condition specifying $T(a, \theta)$.
Using the method of separation of variables, show that the solution which is bounded as $r \rightarrow 0$ is

$$
T(r \theta)=\sum_{m=0}^{\infty} c_{m}\left(\frac{r}{a}\right)^{m} P_{m}(\cos \theta),
$$

where $P_{m}(\cos \theta)$ are Legendre polynomials.
For the particular case when

$$
T(a, \theta)=\left\{\begin{aligned}
T_{0}, & 0 \leq \theta<\pi / 2 \\
-T_{0}, & \pi / 2<\theta \leq \pi
\end{aligned}\right.
$$

show that the constants c_{m} are given by

$$
c_{m}=\left\{\begin{array}{cl}
0, & m \text { even } \\
\frac{(2 s)!}{2^{2 s+1} s!(s+1)!}, & m=2 s+1
\end{array}\right.
$$

You may quote without proof the axisymmetric form of Laplacian ∇^{2} :

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right) .
$$

You may also quote the result

$$
P_{m}^{\prime}(0)=\left\{\begin{array}{cl}
0, & m \text { even. } \\
\frac{(m+1)!(-1)^{\frac{m-1}{2}}}{2 m\left(\frac{m-1}{2}\right)!\left(\frac{m+1}{2}\right)!}, & m \text { odd. }
\end{array}\right.
$$

