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1. (a) Using tensor calculus prove the identities

∇× (∇×A) = ∇(∇ ∙A)−∇2A,

∇ ∙ (A×B) = B ∙ (∇×A)−A ∙ (∇×B),

for vector fields A and B.

(b) Two vector fields E(x, t) and H(x, t) obey the following equations:

∇ ∙ E = 0, ∇ ∙H = 0, ∇× E = −
∂H

∂t
, ∇×H =

∂E

∂t
.

Show that E and H satisfy

∇2E =
∂2E

∂t2
, ∇2H =

∂2H

∂t2

and that

∇ ∙ (H× E) =
1

2

∂

∂t
(|E|2 + |H|2).

2. (a) Find an equation for the tangent plane to the surface 2(x2+y2)+ z2y = 14 at the point

(2, 1, 2).

(b) Find the cosine of the angle between the surfaces 2(x2 + y2) + z2y = 14 and

z = 2(x2 + y2)− 8 at the point (2, 1, 2).

(c) Let p̂ be a unit vector and
∂φ

∂p
= p̂ ∙ ∇φ

be the directional derivative of φ with respect to p̂. In what direction from the point

(2, 1, 2) is the directional derivative of φ = 2(x2 + y2) + z2y− 14 a maximum? What is
the magnitude of this maximum?

(d) Let A be the vector field

A = (4x, 4y + z2, 2zy).

Evaluate the line integral ∫

C

A ∙ dr

where C is the path connecting (0, 0, 0) to (1, 1, 1) with the path following the parametric

curve x = t, y = t2, z = t3 with 0 ≤ t ≤ 1.
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3. (a) State without proof Stokes’ theorem for a vector field A with continuous derivatives, an

open surface S bound by a closed (non-intersecting) curve C.

Hence, or otherwise, evaluate
∫ ∫

S

(∇×A) ∙ ndS

where A = (4x2 + y − 3)i+ 5xyj+ (xz + z2)k and S is
(i) the surface of the hemisphere x2 + y2 + z2 = 9 in z ≥ 0 and
(ii) the paraboloid z = 1− (x2 + y2) in z ≥ 0.

(b) State without proof the divergence theorem satisfied by a differentiable function A in a

simply connected volume V bounded by a surface S.

Hence or otherwise evaluate ∫ ∫

S

A ∙ ndS

where A = (4x, 4y + z2, 2zy) and S is the surface of the unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤
1, 0 ≤ z ≤ 1.

4. Curvilinear coordinates are defined by u, v, z in terms of Cartesian coordinates x, y, z by

x = a cosh u cos v, y = a sinh u sin v, z = z

where a is a constant, u ≥ 0 and 0 ≤ v ≤ 2π.

(a) Sketch the loci in the x, y plane to show the curves of u = constant and v = constant.

Under what circumstances would this be a useful set of coordinates?

(b) Show that the scale factors h1, h2 and h3 for the coordinates u, v, z are given by

h1 = h2 = a
√
sinh2 u+ sin2 v, h3 = 1.

(c) Using the general result

∇2φ =
1

h1h2h3

(
∂

∂q1

(
h2h3

h1

∂φ

∂q1

)

+
∂

∂q2

(
h1h3

h2

∂φ

∂q2

)

+
∂

∂q3

(
h1h2

h3

∂φ

∂q3

))

for scale factors hi and orthogonal coordinates qi (i = 1, 2, 3), determine Laplace’s

equation for φ in terms of u, v, z.

(d) If φ(u, v) = φ(u2 + v2), i.e. φ is a function only of (u2 + v2), show that the general

solution of Laplace’s equation is

φ(u, v) = A log(u2 + v2) + B

with A and B being arbitrary constants.
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5. In spherical polar coordinates (r, θ, λ), axially symmetric functions do not depend upon λ.

State without proof, the set of separable solutions, that are axially symmetric, of the Laplace

equation ∇2φ = 0 where φ = φ(r, θ).

(a) Given the generating function

[1− 2ch+ h2]
−1
2 =

∞∑

n=0

Pn(c)h
n, |h| < 1,

find P0(c), P1(c) and P2(c).

(b) The temperature field T within a ≤ r ≤ b satisfies ∇2T = 0. The spherical surfaces at
r = a, b are subjected to the following boundary conditions:

T = 1 on r = b

and

T = T0 cos θ on r = a.

Show that the temperature field in a ≤ r ≤ b is given by

T =
b

(b− a)

(
1−
a

r

)
+
T0a

2

(a3 − b3)

(

r −
b3

r2

)

cos θ.

(c) Prove that the solution you have just obtained is the unique (i.e the one and only)

solution to the stated boundary value problem.
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