Imperial College
 London

UNIVERSITY OF LONDON
$\begin{array}{ll}\text { Course: } & \text { M2M1 } \\ \text { Setter: } & \text { Stoica } \\ \text { Checker: } & \text { Atkinson } \\ \text { Editor: } & \text { Wu } \\ \text { External: } & \text { Broomhead } \\ \text { Date: } & \text { February 24, 2006 }\end{array}$

BSc and MSci EXAMINATIONS (MATHEMATICS)
MAY-JUNE 2005
This paper is also taken for the relevant examination for the Associateship.

M2M1 Vector Field Theory

Date: examdate Time: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

Setter's signature	Checker's signature	Editor's signature

1. (a) Show that the vector field

$$
\mathbf{A}=x y^{2} \exp \left(x^{2}\right) \mathbf{i}+y \exp \left(x^{2}\right) \mathbf{j}+z^{2} \mathbf{k}
$$

is the gradient of a scalar function $\phi(x, y, z)$. Determine ϕ. Hence or otherwise evaluate the line integral

$$
\int_{C} \mathbf{A} \cdot d \mathbf{r}
$$

where C is any curve from the origin to the point $(1,1,1)$.
(b) Evaluate the integral

$$
\int_{C_{1}} \mathbf{B} \cdot d \mathbf{r}
$$

where C_{1} is a straight line from the origin to the point $(1,1,1)$ and

$$
\mathbf{B}=\mathbf{A}+z \mathbf{i}+x^{2} \mathbf{j}+y^{3} \mathbf{k}
$$

2. (a) State the divergence theorem. Then by substituting $\boldsymbol{F}=\boldsymbol{u} \times \boldsymbol{K}$ into the theorem, where \boldsymbol{K} is an arbitrary constant vector, prove that

$$
\int_{V} \nabla \times \boldsymbol{u} d V=\int_{S} \boldsymbol{n} \times \boldsymbol{u} d S
$$

where V is a volume bounded by a surface S with outward normal \boldsymbol{n}.
(b) State Stokes' Theorem. Then use the theorem to show that

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=2 \pi
$$

where

$$
\mathbf{F}=(x-2 y) \mathbf{i}+\left(y-\frac{1}{2} y z^{2}\right) \mathbf{j}+\left(z-\frac{1}{2} y^{2} z\right) \mathbf{k}
$$

and \mathbf{n} is the unit outward normal vector to the hemisphere S given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$.
3. (a) Curvilinear coordinates (u, v, w) are defined in terms of the cartesian coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ by the relations

$$
x_{1}=e^{u} \cos v \quad x_{2}=e^{u} \sin v \quad x_{3}=w
$$

with $-\pi<w \leq \pi$. Using the identities

$$
\begin{aligned}
\delta \mathbf{x} & =\left(h_{1} \delta u\right) \mathbf{e}_{\mathbf{1}}+\left(h_{2} \delta v\right) \mathbf{e}_{\mathbf{2}}+\left(h_{3} \delta w\right) \mathbf{e}_{\mathbf{3}} \\
\delta \mathbf{x} & =\delta x_{1} \mathbf{i}+\delta x_{2} \mathbf{j}+\delta x_{3} \mathbf{k}
\end{aligned}
$$

or otherwise, calculate the scale factors h_{1}, h_{2}, and h_{3}. Express each of the unit vectors $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$ and $\mathbf{e}_{\mathbf{3}}$ in terms of the cartesian unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}.
(b) A scalar field ϕ is given in terms of the curvilinear coordinates by

$$
\phi=e^{2 u}-3 w^{2} .
$$

Find $\mathbf{F}=\nabla \phi$ and the scalar field $\nabla^{2} \phi$ in terms of the curvilinear coordinates. Then express \mathbf{F} in terms of the cartesian coordinates and re-calculate $\nabla^{2} \phi$ in terms of the cartesian coordinate system. Show that the two expressions for $\nabla^{2} \phi$ are consistent.

You may quote, without proof, the following results for a generalized coordinate system $\left(q_{1}, q_{2}, q_{3}\right)$

$$
\begin{gathered}
\nabla \phi=\frac{1}{h_{1}} \frac{\partial \phi}{\partial q_{1}} \mathbf{e}_{\mathbf{1}}+\frac{1}{h_{2}} \frac{\partial \phi}{\partial q_{2}} \mathbf{e}_{\mathbf{2}}+\frac{1}{h_{3}} \frac{\partial \phi}{\partial q_{3}} \mathbf{e}_{\mathbf{3}} \\
\nabla \cdot \mathbf{F}\left(q_{1}, q_{2}, q_{3}\right)=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(h_{2} h_{3} F_{1}\right)+\frac{\partial}{\partial q_{2}}\left(h_{3} h_{1} F_{2}\right)+\frac{\partial}{\partial q_{3}}\left(h_{1} h_{2} F_{3}\right)\right]
\end{gathered}
$$

4. (a) In spherical polar coordinates (r, θ, λ), axially symmetric functions do not depend on λ. The potential ϕ is subject to the Poisson equation

$$
\nabla^{2} \phi=24 r \cos ^{2} \theta, \quad \text { for } \quad r \leq a,
$$

together with the boundary condition

$$
\phi=0, \quad \text { at } \quad r=a .
$$

Given that

$$
\cos ^{2} \theta=\frac{1}{3} P_{0}(c)+\frac{2}{3} P_{2}(c)
$$

where $c=\cos \theta$ and $P_{0}(c), P_{2}(c)$ are Legendre polynomials, find a particular solution of the Poisson equation in the form $\phi_{P}=r^{3}\left(K_{0} P_{0}(c)+K_{2} P_{2}(c)\right)$. Then solve for $\phi(r, \theta)$ in given region $r \leq a$.

You may quote, without proof, the results: $P_{0}(c)=1, P_{1}(c)=c$ and $P_{2}(c)=$ $\frac{1}{2}\left(3 c^{2}-1\right)$. Also, it may be assumed that the Laplacian of a radially symmetric function ϕ in terms of r and c is

$$
\nabla^{2} \phi(r)=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial c}\left(\left(1-c^{2}\right) \frac{\partial \phi}{\partial c}\right) .
$$

(b) Let (ρ, θ, z) be the usual cylindrical coordinates and consider the Laplace equation $\nabla^{2} \phi=0$. Assume that the solution ϕ has the form $\phi(\rho, \theta, z)=F(\rho) G(\theta)$ (note that ϕ is z-independent).
Deduce the ordinary differential equations that F and G must satisfy (do not solve them!).

You may quote, without proof, that the Laplacian in cylindrical coordinates of a function ϕ is

$$
\nabla^{2} \phi=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial \phi}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \theta^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}} .
$$

5. (a) Prove the identity

$$
T_{i j}^{\prime} T_{i j}^{\prime}=T_{i j} T_{i j}
$$

where $T_{i j}^{\prime}$ and $T_{i j}$ denote the components of a cartesian tensor with respect to right handed cartesian coordinate systems S^{\prime} and S.
(b) State the transformation law satisfied by a $T_{i j k}$, a cartesian tensor of rank 3. Show that $T_{i i j}$ is a cartesian tensor of rank 1.
(c) Give the definition of the inner product of two cartesian tensors. Then verify that the inner product of two cartesian tensors of order 2 is a cartesian tensor of order 2.

