1. (a) The vector field

$$\mathbf{F} = 3(x^2 + z^2)\mathbf{i} + (2z^2y)\mathbf{j} + (6xz + 2y^2z)\mathbf{k}$$

is the gradient of a scalar function $\phi(x,y,z)$. Determine ϕ . Hence or otherwise evaluate the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where C is a curve from the origin to the point (1,1,1).

- (b) Calculate the directional derivative of ϕ at the point (1,1,1) in the direction (2,2,-2).
- (c) Evaluate the integral

$$\int_{C_1} \mathbf{A} \cdot d\mathbf{r}$$

where C_1 is a straight line from the origin to the point (1,1,1) and

$$\mathbf{A} = \mathbf{F} + 4y^3 \mathbf{i} \quad .$$

2. (a) State, without proof, the divergence theorem satisfied by a differentiable vector field \mathbf{E} in a simply connected volume V bounded by a surface S. For the vector field

$$\mathbf{G} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \quad ,$$

what is $\nabla \cdot \mathbf{G}$? Verify the divergence theorem for the vector field \mathbf{G} when the simply connected volume is a sphere of radius a centered at the origin.

(b) Using Stokes' Theorem show that

$$\iint_{S} (\nabla \times \mathbf{H}) \cdot \mathbf{n} dS = 2\pi$$

where

$$\mathbf{H} = -y\mathbf{i} + x\mathbf{j} + \sin(z)\mathbf{k}$$

and n is the unit outward normal vector to the curved surface S of the hemisphere $x^2 + y^2 + z^2 \le 1$ with $z \ge 0$.

3. (a) Curvilinear coordinates (u,v,w) are defined in terms of the cartesian coordinates (x_1,x_2,x_3) by the relations

$$x_1 = uv\cos w$$
 $x_2 = uv\sin w$ $x_3 = \frac{1}{2}(u^2 - v^2)$

with $-\pi < w \le \pi$. Using the identities

$$\delta \mathbf{x} = (h_1 \delta u) \mathbf{e_1} + (h_2 \delta v) \mathbf{e_2} + (h_3 \delta w) \mathbf{e_3}$$

$$\delta \mathbf{x} = \delta x_1 \mathbf{i} + \delta x_2 \mathbf{j} + \delta x_3 \mathbf{k}$$

or otherwise, calculate the scale factors h_1 , h_2 , and h_3 . Express each of the unit vectors $\mathbf{e_1}$, $\mathbf{e_2}$ and $\mathbf{e_3}$ in terms of the cartesian unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} .

(b) A scalar field ϕ is given in terms of the curvilinear coordinates by

$$\phi = \frac{1}{4}(u^2 + v^2)^2 \quad .$$

Find $\nabla \phi$ in terms of $u, v, w, \mathbf{e_1}, \mathbf{e_2}$ and $\mathbf{e_3}$. Express the function ϕ in terms of the cartesian coordinates and re-calculate $\nabla \phi$ in terms of the cartesian coordinate system. Show that the two expressions for $\nabla \phi$ are consistent.

You may quote, without proof, the following result for a generalized coordinate system (q_1, q_2, q_3)

$$\nabla f(q_1, q_2, q_3) = \frac{1}{h_1} \frac{\partial f}{\partial q_1} \mathbf{e_1} + \frac{1}{h_2} \frac{\partial f}{\partial q_2} \mathbf{e_2} + \frac{1}{h_3} \frac{\partial f}{\partial q_3} \mathbf{e_3}$$

4. In spherical polar coordinates (r, θ, λ) , axially symmetric functions do not depend on λ . State, without proof, the set of separable solutions, which are axially symmetric, of the Laplace equation $\nabla^2 \psi = 0$, where $\psi = \psi(r, \theta)$.

The function $\phi(r,\theta)$ satisfies the Poisson equation

$$\nabla^2 \phi = 3$$
, for $r \le a$,

together with the boundary condition

$$\phi = a^2 \cos(2\theta)$$
, at $r = a$.

Show that a particular solution in the region $r \leq a$ of the Poisson equation is $\phi_p = K r^2$ where the constant K should be determined. Show that $a^2 \cos(2\theta)$ can be expressed as a linear combination of the Legendre polynomials P_0 , $P_1(c)$, and $P_2(c)$ with $c = \cos \theta$.

Determine the solution for $\phi(r,\theta)$ in the region $r \leq a$.

You may quote, without proof the results: $P_0=1$, $P_1(c)=c$ and $P_2(c)=\frac{1}{2}(3c^2-1)$. Also, it may be assumed that the Laplacian of a radially symmetric function $\phi_p(r)$ is

$$\nabla^2 \phi_p(r) = \frac{d^2 \phi_p(r)}{dr^2} + \frac{2}{r} \frac{d \phi_p(r)}{dr}$$

5. (a) State the transformation law satisfied by a tensor of rank 2. Prove the identity

$$T'_{ij}T'_{ij} = T_{ij}T_{ij} \quad ,$$

where T'_{ij} , T_{ij} denote the components of a tensor with respect to right handed cartesian coordinate systems S' and S.

- (b) Use tensor notation to establish the identities
 - (i) $\nabla \cdot (\phi \mathbf{u}) = (\nabla \phi) \cdot \mathbf{u} + \phi (\nabla \cdot \mathbf{u})$
 - (ii) $\nabla \times (\phi \mathbf{u}) = (\nabla \phi) \times \mathbf{u} + \phi(\nabla \times \mathbf{u})$
 - (iii) $\nabla \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\nabla \times \mathbf{u}) \mathbf{u} \cdot (\nabla \times \mathbf{v})$