1. The partial differential equation governing the fluid speed $u(x, t)$ in a one-dimensional flow is

$$
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0
$$

Initially, at $t=0$, the flow is given by $u(x, 0)=e^{-x^{2}}$.
(i) Show that an implicit form of the solution for $u(x, t)$ is

$$
x=u t \pm[\log (1 / u)]^{1 / 2} .
$$

(ii) At some time t_{s}, a shock forms in the solution to this problem at a point $x=x_{s}$. Find t_{s} and x_{s} and the corresponding value of u at this point.
2. (i) The Lagrangian description of a one-dimensional flow is given implicitly by the equation

$$
e^{-x}=e^{-t}+e^{-\zeta}-1
$$

where ζ labels the fluid particle which is at $x=\zeta$ at $t=0$. Find the speed, at time $t=1$, of the fluid particle which is at $x=1$ when $t=0$.
(ii) Solve the following partial differential equation by the method of characteristics:

$$
x \frac{\partial u}{\partial t}+t \frac{\partial u}{\partial x}=0, \text { with } u=e^{-x^{2}} \text { when } t=0 .
$$

(iii) The kinematic wave equation for $u(x, t)$ is

$$
\frac{\partial u}{\partial t}+(u+k) \frac{\partial u}{\partial x}=0
$$

where k is a positive constant. Suppose initial conditions for this partial differential equation are

$$
u(x, 0)=\left\{\begin{array}{ll}
1, & x \leq 0 \\
1+x, & 0 \leq x \leq 1 \\
2, & x \geq 1
\end{array}\right\}
$$

Sketch the characteristics for this equation in the (x, t)-plane.
3. (i) Derive the Euler-Lagrange equation for the function $u(x, y)$ which is the extremum of the functional

$$
\int_{\Omega}\left(\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}\right)-f(u)\right) d x d y
$$

The domain Ω is assumed to be a simply connected finite subset of \mathbb{R}^{2} with smooth boundary.
(ii) Consider the Hamiltonian

$$
H(q, p)=\frac{1}{2} e^{-b t} p^{2}+\frac{1}{2} e^{b t} \omega^{2} q^{2} .
$$

(a) Derive Hamilton's equations of motion.
(b) Show that the equations of motion are equivalent to the equation

$$
\ddot{q}+b \dot{q}+\omega^{2} q=0 .
$$

(iii) Consider a system of two particles moving in one dimension, with Lagrangian

$$
L=\frac{1}{2} m_{1} \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2}-V\left(q_{1}, q_{2}\right)
$$

where the interaction potential depends only on the difference $q_{1}-q_{2}$:

$$
V\left(q_{1}, q_{2}\right)=V\left(q_{1}-q_{2}\right)
$$

(a) Derive the Euler-Lagrange equations.
(b) Show that the total momentum

$$
P=m_{1} \dot{q}_{1}+m_{2} \dot{q}_{2}
$$

is conserved.
4. Consider the Lagrangian

$$
L=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+A(x, y) \dot{x}+B(x, y) \dot{y}-\Phi(x, y)
$$

(i) Derive the Euler-Lagrange equations.
(ii) Show that the Euler-Lagrange equations remain invariant if we replace $A(x, y), B(x, y)$ with

$$
\hat{A}=A+\frac{\partial f}{\partial x}, \quad \hat{B}=B+\frac{\partial f}{\partial y},
$$

where $f=f(x, y)$ is an arbitrary function.
(iii) Derive the Hamiltonian function.
(iv) Let $\Phi(x, y)=\sin (x)+\sin (y), A(x, y)=\cos (x) \sin (y), B(x, y)=\sin (x) \cos (y)$. Show that in this case the Hamiltonian system is integrable.

