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1. (a) Let

A =
1

4




1 3 1

3 25 3

1 3 5



 ,

and

e1 =




1

0

0



 , e2 =




0

1

0



 and e3 =




0

0

1



 .

Assuming that A is positive definite, let 〈∙, ∙〉A be the inner product on R3 × R3

induced by A. Apply the classical Gram-Schmidt algorithm using 〈∙, ∙〉A to the vectors
{ei}

3
i=1 to produce orthonormal vectors {qi}

3
i=1 with respect to 〈∙, ∙〉A.

(b) Let u ∈ Rn with ‖u‖ = 1. Define

P = I − 2uuT ∈ Rn×n .

Prove that P is a symmetric orthogonal matrix such that

(i) P u = −u ,

and (ii) P v = v ∀ v ∈ Rn with vTu = 0 .

Find
n∑

i=1

Pii .

(c) Find the Newton form of the cubic interpolating polynomial for the data

{(xi, fi)}3i=0 ≡ {(1, 1), (−1, 5), (2, 11), (0, 1) } .
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2. (a) Use Givens rotations to compute the least squares solution x? of the overdetermined

linear system Ax = b, where

A =




4 1

0 1

3 2



 , x =

(
x1
x2

)

and b =




4

1

−2



 .

Calculate the error ‖Ax? − b‖, where ‖y‖ = (yTy)
1
2 .

Check your solution by solving the corresponding normal equations.

(b) Define the Cholesky factorization of a symmetric positive definite matrix.

Show that




16 4 −4
4 10 2

−4 2 27





is positive definite.

Compute its Cholesky factorization.
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3. Let V be a real vector space. State the properties that a real-valued function 〈∙, ∙〉 on
V × V must satisfy for it to be an inner product.

Let U be a subspace of V with basis {φi}ni=1. Given any v ∈ V , let

E(λ) = ‖v −
n∑

i=1

λi φi‖
2, where λ = (λ1, λ2, ∙ ∙ ∙ , λn)

T ∈ Rn

and ‖ ∙ ‖ = [〈∙, ∙〉]
1
2 . Show that

E(λ) = ‖v‖2 − 2λTμ+ λTGλ,

where μ ∈ Rn and G ∈ Rn×n are such that

μi = 〈v, φi〉 and Gij = 〈φi, φj〉, i, j = 1→ n.

Derive the following results.

(i) G is a symmetric positive definite matrix.

(ii) There exists a unique λ? ∈ Rn such that Gλ? = μ.

(iii) E(λ? + h) = E(λ?) + hTGh ≥ E(λ?) ∀ h ∈ Rn.

(iv) u? =
n∑

i=1

λ?i φi ∈ U is such that 〈v − u
?, u〉 = 0 ∀ u ∈ U .

(v) E(λ?) = ‖v‖2 − ‖u?‖2.

Let V = C[0, 1] with inner product

〈f, g〉 =
∫ 1

0

(1 + x) f(x) g(x) dx ∀ f, g ∈ C[0, 1].

Let U = P1, with basis {1, x}.

If v = 13
6
(1 + x)−1, find the corresponding u? and calculate E(λ?).
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4. (a) For n ≥ 0, let

Vn+1(x) = sin(cos
−1 x) sin(n(cos−1 x)) ∀ x ∈ [−1, 1].

By introducing the change of variable x = cos θ, and noting a trigonometric identity,

derive the recurrence relation

Vn+1(x) + Vn−1(x) = 2 xVn(x) for n ≥ 2.

Hence, or otherwise, show that Vn+1 ∈ Pn+1 for n ≥ 1.

For n ≥ 1, let

x?j = cos(
j π

n
), j = 0→ n.

Show for n ≥ 1 that

Vn+1(x
?
j) = 0 and V ′n+1(x

?
j) = (−1)

j+1 n aj j = 0→ n,

where a0 = an = 2 and aj = 1 for j = 1→ n− 1.

(b) For i = 0→ n, let

`i(x) =
n∏

j=0, j 6=i

(x− xj)
(xi − xj)

,

where {xj}nj=0 are distinct points.

Write down the polynomial pn ∈ Pn, in terms of {`i}ni=0, which interpolates the data
{xj, f(xj)}nj=0.

Show that this interpolating polynomial is unique, and hence that
n∑

i=0

`i(x) = 1.

For i = 0→ n, show that

`i(x) =
qi L(x)

(x− xi)
, where L(x) =

n∏

j=0

(x− xj) and qi = [L
′(xi)]

−1.

Hence deduce that

pn(x) =

n∑

i=0

qi (x− xi)
−1 f(xi)

n∑

i=0

qi (x− xi)
−1

for x 6= xj, j = 0→ n.

Finally, if the interpolation points {xj}nj=0 are chosen so that xj = x
∗
j , j = 0 → n,

as defined in part (a) above; show that

pn(x) =

n∑

i=0

ci (x− x
?
i )
−1 f(x?i )

n∑

i=0

ci (x− x
?
i )
−1

for x 6= x?j , j = 0→ n,

where c0 =
1
2
, cn = (−1)n 12 and cj = (−1)

j for j = 1→ n− 1.
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