M2AA2 - Multivariable Calculus. Assessed Coursework II
Solutions

March 19, 2009. Prof. D.T. Papageorgiou

1. (a) Use a source singularity at $\boldsymbol{x}_{0}=\left(x_{0}, y_{0}\right)$ and an image sink singularity at $\boldsymbol{x}_{0}^{\prime}=$ $\left(x_{0},-y_{0}\right)$ to find the required Green's function:

$$
G\left(\boldsymbol{x} ; \boldsymbol{x}_{0}\right)=\frac{1}{2 \pi} \log \left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|-\frac{1}{2 \pi} \log \left|\boldsymbol{x}-\boldsymbol{x}_{0}^{\prime}\right| .
$$

(b) The problem is a Dirichlet one, therefore the solution in terms of the Dirichlet Green's function at any point \boldsymbol{x}_{0} in the upper half-plane is

$$
\begin{equation*}
\phi\left(\boldsymbol{x}_{0}\right)=\int_{\partial D} \phi \frac{\partial G}{\partial n} d s=\int_{-\infty}^{\infty} \phi(x)\left[-\frac{\partial G}{\partial y}\right] d x \tag{1}
\end{equation*}
$$

Now substitute $\left[-\frac{\partial G}{\partial y}\right]_{y=0}=\frac{\left(y_{0} / \pi\right)}{\left(x-x_{0}\right)^{2}+y_{0}^{2}}$ and the boundary conditions into the solution (1) to obtain

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\frac{y_{0}}{\pi} \int_{-1}^{1} \frac{d x}{\left(x-x_{0}\right)^{2}+y_{0}^{2}} \tag{2}
\end{equation*}
$$

(c) The integral in (2) can be carried out in closed form

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\left[\frac{1}{\pi} \tan ^{-1}\left(\frac{x-x_{0}}{y_{0}}\right)\right]_{-1}^{1}=\frac{1}{\pi}\left[\tan ^{-1}\left(\frac{1-x_{0}}{y_{0}}\right)+\tan ^{-1}\left(\frac{1+x_{0}}{y_{0}}\right)\right] . \tag{3}
\end{equation*}
$$

- $x_{0}>1$: Consider the limit $y_{0} \rightarrow 0+$ in (3). The first term tends to $-\pi / 2$ while the second tends to $\pi / 2$, hence the solution tends to 0 as it should according to the boundary conditions.
- $x_{0}<-1$: As above, but now the first term tends to $+\pi / 2$ while the second tends to $-\pi / 2$.
- $-1<x_{0}<1$: Both terms tend to $+\pi / 2$ as $y_{0} \rightarrow 0+$, hence $\phi \rightarrow 1$.
(d) First part follows immediately from setting $x_{0}=0$ in (3).

A reduction by a factor N implies

$$
\begin{equation*}
\frac{1}{N}=\frac{2}{\pi} \tan ^{-1}\left(\frac{1}{y_{N}}\right) \Rightarrow y_{N}=\frac{1}{\tan (\pi / 2 N)} \tag{4}
\end{equation*}
$$

as required.
A reduction by 99% means that the temperature will be $1 / 100$ of what it was to begin with at the wall. Hence $N=100$. Since $\tan \epsilon=\epsilon+\ldots$ and $\pi / 200 \ll 1$, we estimate $y_{100} \approx 200 / \pi \approx 70$.
2. (a) Write $u(x, t)=X(x) T(t)$ which on separation of variables gives

$$
\frac{1}{\kappa} \frac{T^{\prime}(t)}{T}=\frac{X^{\prime \prime}(x)}{X}
$$

For decaying solutions at large times, the separation constant must be negative, i.e.

$$
T^{\prime}=-\kappa \lambda^{2}, \quad X^{\prime \prime}+\lambda^{2} X=0
$$

The solution for X is

$$
X(x)=\alpha \sin (\lambda x)+\beta \cos (\lambda x)
$$

and since $X(0)=X(L)=0$ from the boundary conditions, we have $\beta=0$ and $\lambda=n \pi / L$. Hence

$$
X_{n}(x)=\alpha_{n} \sin (n \pi x / L)
$$

is a separated solution for any $n \geq 1$.
With this value of λ we can solve for T to find

$$
T_{n}(t)=A_{n} \exp \left(-n^{2} \pi^{2} \kappa t / L^{2}\right)
$$

as the time-dependent separated solution.
Putting these together gives the required series solution.
(b) To find s_{n} we impose the initial condition to obtain

$$
U_{0}=\sum_{n=1}^{\infty} s_{n} \sin \frac{n \pi x}{L} .
$$

This is the fourier sine series of U_{0} and hence we have

$$
s_{n}=\frac{2}{L} \int_{0}^{L} U_{0} \sin \frac{n \pi x}{L} d x=\frac{2 U_{0}}{n \pi}(1-\cos n \pi) .
$$

If $\kappa=L=1$, then $u(x, t)=s_{1} \sin (\pi x) \exp \left(-\pi^{2} t\right)+\ldots=\frac{4 U_{0}}{\pi} \sin (\pi x) \exp \left(-\pi^{2} t\right)+$ Hence, the required time is approximately given by

$$
\frac{4 U_{0}}{\pi} \exp \left(-\pi^{2} t\right)=\frac{U_{0}}{2} \Rightarrow t \approx \frac{1}{\pi^{2}} \ln (8 / \pi)
$$

3. The argument is correct until the step involving equation (4). Here are the reasons:

- The cosine series of e^{x} is valid for $x \in[0, L]$ and comes from the fourier series of e^{x} on $[-L, L]$ when e^{x} for $x \in[0, L]$ is extended to $[-L, 0]$ as an even function. Hence, the function is piecewise smooth and continuous.
- The expression (3) can therefore be differentiated term-by-term and will converge everywhere to e^{x} except at the points where the derivative is discontinuous, i.e. $x=0, L$. This is the fourier sine series of e^{x} - we can see directly from thinking about the fourier sine series of e^{x}, that there will be discontinuities at $x=0, L$ since it must be extended to $[-L, 0]$ as an odd function of x.
- If we now take this fourier sine series, we cannot differentiate it term-by-term because it is not continuous. This is where the argument goes wrong.
- Fourier coefficients can be found in the usual way.

