
M2AA2 - Multivariable Calculus. Assessed Coursework II
Solutions

March 19, 2009. Prof. D.T. Papageorgiou

1. (a) Use a source singularity at x0 = (x0, y0) and an image sink singularity at x′0 =
(x0,−y0) to find the required Green’s function:

G(x; x0) =
1

2π
log |x− x0| −

1

2π
log |x− x′0|.

(b) The problem is a Dirichlet one, therefore the solution in terms of the Dirichlet
Green’s function at any point x0 in the upper half-plane is

φ(x0) =
∫
∂D
φ
∂G

∂n
ds =

∫ ∞
−∞

φ(x)

[
−∂G
∂y

]
dx. (1)

Now substitute
[
−∂G

∂y

]
y=0

= (y0/π)
(x−x0)2+y20

and the boundary conditions into the so-

lution (1) to obtain

φ(x0, y0) =
y0

π

∫ 1

−1

dx

(x− x0)2 + y2
0

. (2)

(c) The integral in (2) can be carried out in closed form

φ(x0, y0) =

[
1

π
tan−1

(
x− x0

y0

)]1

−1

=
1

π

[
tan−1

(
1− x0

y0

)
+ tan−1

(
1 + x0

y0

)]
. (3)

• x0 > 1: Consider the limit y0 → 0+ in (3). The first term tends to −π/2
while the second tends to π/2, hence the solution tends to 0 as it should
according to the boundary conditions.

• x0 < −1: As above, but now the first term tends to +π/2 while the second
tends to −π/2.

• −1 < x0 < 1: Both terms tend to +π/2 as y0 → 0+, hence φ→ 1.

(d) First part follows immediately from setting x0 = 0 in (3).

A reduction by a factor N implies

1

N
=

2

π
tan−1

(
1

yN

)
⇒ yN =

1

tan(π/2N)
, (4)

as required.

A reduction by 99% means that the temperature will be 1/100 of what it was to
begin with at the wall. Hence N = 100. Since tan ε = ε+ . . . and π/200� 1, we
estimate y100 ≈ 200/π ≈ 70.
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2. (a) Write u(x, t) = X(x)T (t) which on separation of variables gives

1

κ

T ′(t)

T
=
X ′′(x)

X
.

For decaying solutions at large times, the separation constant must be negative,
i.e.

T ′ = −κλ2, X ′′ + λ2X = 0.

The solution for X is

X(x) = α sin(λx) + β cos(λx),

and since X(0) = X(L) = 0 from the boundary conditions, we have β = 0 and
λ = nπ/L. Hence

Xn(x) = αn sin(nπx/L),

is a separated solution for any n ≥ 1.

With this value of λ we can solve for T to find

Tn(t) = An exp(−n2π2κt/L2),

as the time-dependent separated solution.

Putting these together gives the required series solution.

(b) To find sn we impose the initial condition to obtain

U0 =
∞∑
n=1

sn sin
nπx

L
.

This is the fourier sine series of U0 and hence we have

sn =
2

L

∫ L

0
U0 sin

nπx

L
dx =

2U0

nπ
(1− cosnπ).

If κ = L = 1, then u(x, t) = s1 sin(πx) exp(−π2t) + . . . = 4U0

π
sin(πx) exp(−π2t) +

. . .. Hence, the required time is approximately given by

4U0

π
exp(−π2t) =

U0

2
⇒ t ≈ 1

π2
ln(8/π).

3. The argument is correct until the step involving equation (4). Here are the reasons:

• The cosine series of ex is valid for x ∈ [0, L] and comes from the fourier series of
ex on [−L,L] when ex for x ∈ [0, L] is extended to [−L, 0] as an even function.
Hence, the function is piecewise smooth and continuous.
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• The expression (3) can therefore be differentiated term-by-term and will converge
everywhere to ex except at the points where the derivative is discontinuous, i.e.
x = 0, L. This is the fourier sine series of ex - we can see directly from thinking
about the fourier sine series of ex, that there will be discontinuities at x = 0, L
since it must be extended to [−L, 0] as an odd function of x.

• If we now take this fourier sine series, we cannot differentiate it term-by-term
because it is not continuous. This is where the argument goes wrong.

• Fourier coefficients can be found in the usual way.
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