
M2AA2 - Multivariable Calculus. Problem Sheet 8. Solutions.
Professor D.T. Papageorgiou

Recall that the Euler equation that extremises I[y] =
∫ x1
x0
f(x, y, y′)dx is

∂f

∂y
− d

dx

∂f

∂y′
= 0. (1)

If the function f is independent of x, then the following is an integral of the Euler equation above,

f(y, y′)− y′ ∂f
∂y′

(y, y′) = const. (2)

These results are used in the problems that follow.

1. (a) The integrand is f(x, y, y′) = (y′)2/s3. The Euler equation (1) is, therefore,

− d

dx

(
2y′

x3

)
⇒ y(x) = K1x

4 +K2.

Apply boundary conditions to find y(x) = (1/5)(−x+ 1).
(b) Since f is independent of x we can use (2), which becomes

− 1
2

(y′)2 + y = c ⇒ dy√
y − c

=
√

2dx ⇒
√

2(y − c)1/2 = x+ d ⇒ 2(y − c) = (x+ d)2.

Apply boundary conditions to find d = 1/2, c = −1/8.

2. The Euler equation (1) and its solution is

− d

dx

[
y′

x
√

1 + (y′)2

]
= 0 ⇒ y′

x
√

1 + (y′)2
= c

⇒ (y′)2 =
x2c2

1− x2c2
⇒ y + d = −1

c

√
1− x2c2 ⇒ x2 + (y + d)2 =

1
c2
.

Now use the boundary conditions to find c, d; we find d = x2
0−x2

1+y2
0−y2

1
2(y1−y0) with c following from

either of the equations x2
0 + (y0 + d)2 = 1/c2 OR x2

1 + (y1 + d)2 = 1/c2.

3. Let us do part (b) and then part (a) is a special case. Include variations to an optimal solution
u(x) by writing y(x) = u(x) + εη(x). The condition for an extremum is (see your notes)

0 = I ′(ε) =
∫ x1

x0

[
∂f

∂y
η +

∂f

∂y′
η′ + . . .

∂f

∂y(n)
η(n)

]
dx

Now integrate by parts each term to write the integral as
∫ x1
x0
η(x)L[y]dx, hence L[y] = 0 as

required. In the integration by parts, all derivatives up to and including η(n−1) vanish at
x = x0, x1. The only thing you need to convince yourselves with is the result∫ x1

x0

η(n) ∂f

∂y(n)
dx = η(n−1) ∂f

∂y(n)

∣∣∣∣x1

x0

−
∫ x1

x0

η(n−1) d

dx

∂f

∂y(n)
dx

= − η(n−2) d

dx

∂f

∂y(n)

∣∣∣∣x1

x0

+
∫ x1

x0

η(n−2) d
2

dx2

∂f

∂y(n)
dx = . . . =

∫ x1

x0

(−1)n dn

dxn

∂f

∂y(n)
.
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4. Here f is a function of x, y, y′ so use the Euler equation (1). This becomes

2by′ + 2cy − d

dx

[
2ay′ + 2by

]
= 0 ⇒ ay′′ + a′y′ + (b′ − c)y = 0,

is the desired 2nd order ODE. If b = const. then this does not enter into the equation since
b′ = 0.

5. The Euler equation comes from Problem 3 with n = 2. It is in this case

32y − d

dx
[0] +

d2

dx2

[
2y′′

]
= 0 ⇒ y′′′′ + 16y = 0.

Looking for solutions of the form exp(λx) gives λ4 = 16, i.e. λ = ±2,±2i, hence

y(x) = Ae2x +Be−2x + C cos 2x+D sin 2x.

Now apply the boundary conditions to get A,B,C,D.

6. In this problem we are dealing with stationary values of integrals of F ≡ F (x, φ, φx, φy, φxy, φxx, φyy).
There are two independent variables x, y but F depends on derivatives of φ up to and includ-
ing 2nd order. In your notes we derived the Euler equations for F (x, φ, φx, φy); this problem
extends that.

Including variations to the stationary function via φ(x, y) = u(x, y) + εη(x, y) leads to the
integral condition (I ′(ε) = 0 in the notation of the notes)∫ ∫

D

[
η
∂F

∂φ
+ ηx

∂F

∂φx
+ ηy

∂F

∂φy
+ ηxy

∂F

∂φxy
+ ηxx

∂F

∂φxx
+ ηyy

∂F

∂φyy

]
dxdy.

We need to integrate by parts to cast the integral above into the form
∫ ∫

D η(x, y)L[φ]dxdy.
The way to deal with the first three terms is in your notes. I will show you how to integrate
the 4th term, the 5th and 6th being essentially the same. Start with defining the upper and
lower boundaries of D as y = U2(x) and y = U1(x), respectively, and also the right and left
boundaries by x = R2(y) and x = R1(y). Then

∫ ∫
D
ηxy

∂F

∂φxy
dxdy =

∫
x

[
ηx

∂F

∂φxy

]U2(x)

U1(x)

dx−
∫ ∫

D
ηx

∂

∂y

∂F

∂φxy
dxdy

The boundary terms are zero, hence the first integral on the RHS is zero. Continue with an
integration by parts with respect to x now.

−
∫ ∫

D
ηx

∂

∂y

∂F

∂φxy
dxdy = −

∫
y

[
η

∂2F

∂y∂φxy

]R2(y)

R1(y)

dy +
∫ ∫

D
η

∂3F

∂x∂y∂φxy
dxdy.

Again the boundary term is zero leaving the result∫ ∫
D
ηxy

∂F

∂φxy
dxdy =

∫ ∫
D
η

∂3F

∂x∂y∂φxy
dxdy.
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We can get the other two integrals in a totally analogous way - note that since there is an even
number of derivatives of η in each of these terms the sign of the required integral is positive.
[Carry out the work for the other two terms to familiarise yourselves with the mechanics of
it.] Put it all together to obtain∫ ∫

D
η(x, y)

[
∂F

∂φ
− ∂

∂x

(
∂F

∂φx

)
− ∂

∂y

(
∂F

∂φy

)
+

∂2

∂x∂y

(
∂F

∂φxy

)
+

∂2

∂x2

(
∂F

∂φxx

)
+

∂2

∂y2

(
∂F

∂φyy

)]
dxdy,

leading to the following Euler equation (the usual arguments/Lemmas are used here)

∂F

∂φ
− ∂

∂x

(
∂F

∂φx

)
− ∂

∂y

(
∂F

∂φy

)
+

∂2

∂x∂y

(
∂F

∂φxy

)
+

∂2

∂x2

(
∂F

∂φxx

)
+

∂2

∂y2

(
∂F

∂φyy

)
= 0. (3)

Now we are in a position to answer the problems:

(a) Here F = φ2
xx + φ2

yy + 2φxxφyy and hence depends only on φxx and φyy. The Euler
equation (3) becomes, therefore,

∂2

∂x2
(2φxx + 2φyy) +

∂2

∂y2
(2φyy + 2φxx) = 0 ⇒ ∆2φ = 0, where ∆ ≡ ∂2

∂x2
+

∂2

∂y2
.

The operator ∆2 = ∇4 is called the biharmonic operator.
(b) In this case F = φ2

xx + φ2
yy + 3φxxφyy − φ2

xy, and the Euler equation (3) becomes

(−2φxy)xy + (2φxx + 3φyy)xx + (2φyy + 3φxx)yy = 0 ⇒ φxxxx + 2φxxyy + φyyyy = 0
⇒ ∆2φ = 0

7. We introduce a Lagrange multiplier λ and note that a, b, c are functions of x, hence the Euler
equation is

2bu′ + 2cu+ 2λu− d

dx

(
2au′ + 2bu

)
= 0 ⇒ au′′ + a′u′ + (b′ − c− λ)u = 0,

is the required Euler equation.

8. First consider the general case of finding the geodesics of a given surface G(x, y, z) = 0, say.
Parametrise the curve by x = x(t), y = y(t), z = z(t) and the problem is that of minimizing∫ t1

t0
F (x, y, z, ẋ, ẏ, ż)dt, F (x, y, z, ẋ, ẏ, ż) =

√
ẋ2 + ẏ2 + ż2 (4)

subject to

G(x(t), y(t), z(t)) = 0. (5)

In addition to (5) the required conditions are

d

dt

∂F

∂ẋ
− ∂F

∂x
= λ

∂G

∂x
d

dt

∂F

∂ẏ
− ∂F

∂y
= λ

∂G

∂y

d

dt

∂F

∂ż
− ∂F

∂z
= λ

∂G

∂z
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which on substituting F from (4) become

d

dt

ẋ√
ẋ2 + ẏ2 + ż2

= λ
∂G

∂x
(6)

d

dt

ẏ√
ẋ2 + ẏ2 + ż2

= λ
∂G

∂y
(7)

d

dt

ż√
ẋ2 + ẏ2 + ż2

= λ
∂G

∂z
(8)

Now for a cylinder (without loss of generality take the radius to be 1), we have

G(x, y, z) = x2 + y2 − 1 = 0, (9)

i.e. G does not depend on z. This implies that (8) becomes

d

dt

ż√
1 + ż2

= 0 ⇒ ż = const.

Since the cylinder is parametrised by x = x(t) = cos t, y = y(t) = sin t (follow from (9)), and
z = z(t) = ct with c a constant, the solution is a helix. Equations (6) or (7) can be used to
find λ.

9. Suppose that the required closed curve has parametric equations x = x(t) and y = y(t),
t0 ≤ t ≤ t1. From Green’s theorem the enclosed area is given by

I =
1
2

∫ t1

t0
(xẏ − yẋ)dt. (10)

The constraint is that the curve has given length, i.e.∫ t1

t0

√
ẋ2 + ẏ2dt = L.

Note that the dependent variables are now x, ẋ, yẏ and the independent variable is t. Hence,
the Euler equations introducing a Lagrange multiplier are

1
2
ẏ − d

dt

[
−1

2
y +

λẋ√
ẋ2 + ẏ2

]
= 0

1
2
ẋ+

d

dt

[
1
2
x+

λẏ√
ẋ2 + ẏ2

]
= 0

Now use arc length to parametrise the curve, i.e. set t = s above. For an arc length
parametrisation we have

x′2 + y′2 = 1,

where primes denote d/ds, hence the differential equations become

y′ − λx′′ = 0
x′ + λy′′ = 0
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Integrate these to obtain the solutions

λx′ = y +K1

λy′ = K2 − x

and since x′2 + y′2 = 1 we have

(x− α)2 + (y − β)2 = λ2,

which is the equation for a circle. The constants α, β, λ can be determined from the supplied
conditions.

5


