M2AA2 - Multivariable Calculus. Problem Sheet 8. Solutions.

 Professor D.T. PapageorgiouRecall that the Euler equation that extremises $I[y]=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x$ is

$$
\begin{equation*}
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}=0 \tag{1}
\end{equation*}
$$

If the function f is independent of x, then the following is an integral of the Euler equation above,

$$
\begin{equation*}
f\left(y, y^{\prime}\right)-y^{\prime} \frac{\partial f}{\partial y^{\prime}}\left(y, y^{\prime}\right)=\text { const } \text {. } \tag{2}
\end{equation*}
$$

These results are used in the problems that follow.

1. (a) The integrand is $f\left(x, y, y^{\prime}\right)=\left(y^{\prime}\right)^{2} / s^{3}$. The Euler equation (1) is, therefore,

$$
-\frac{d}{d x}\left(\frac{2 y^{\prime}}{x^{3}}\right) \quad \Rightarrow \quad y(x)=K_{1} x^{4}+K_{2} .
$$

Apply boundary conditions to find $y(x)=(1 / 5)(-x+1)$.
(b) Since f is independent of x we can use (2), which becomes

$$
\begin{aligned}
& -\frac{1}{2}\left(y^{\prime}\right)^{2}+y=c \quad \Rightarrow \quad \frac{d y}{\sqrt{y-c}}=\sqrt{2} d x \quad \Rightarrow \\
& \sqrt{2}(y-c)^{1 / 2}=x+d \quad \Rightarrow \quad 2(y-c)=(x+d)^{2} .
\end{aligned}
$$

Apply boundary conditions to find $d=1 / 2, c=-1 / 8$.
2. The Euler equation (1) and its solution is

$$
\begin{aligned}
&-\frac{d}{d x}\left[\frac{y^{\prime}}{x \sqrt{1+\left(y^{\prime}\right)^{2}}}\right]=0 \quad \Rightarrow \quad \frac{y^{\prime}}{x \sqrt{1+\left(y^{\prime}\right)^{2}}}=c \\
& \Rightarrow \quad\left(y^{\prime}\right)^{2}=\frac{x^{2} c^{2}}{1-x^{2} c^{2}} \quad \Rightarrow \quad y+d=-\frac{1}{c} \sqrt{1-x^{2} c^{2}} \quad \Rightarrow \quad x^{2}+(y+d)^{2}=\frac{1}{c^{2}} .
\end{aligned}
$$

Now use the boundary conditions to find c, d; we find $d=\frac{x_{0}^{2}-x_{1}^{2}+y_{0}^{2}-y_{1}^{2}}{2\left(y_{1}-y_{0}\right)}$ with c following from either of the equations $x_{0}^{2}+\left(y_{0}+d\right)^{2}=1 / c^{2}$ OR $x_{1}^{2}+\left(y_{1}+d\right)^{2}=1 / c^{2}$.
3. Let us do part (b) and then part (a) is a special case. Include variations to an optimal solution $u(x)$ by writing $y(x)=u(x)+\epsilon \eta(x)$. The condition for an extremum is (see your notes)

$$
0=I^{\prime}(\epsilon)=\int_{x_{0}}^{x_{1}}\left[\frac{\partial f}{\partial y} \eta+\frac{\partial f}{\partial y^{\prime}} \eta^{\prime}+\ldots \frac{\partial f}{\partial y^{(n)}} \eta^{(n)}\right] d x
$$

Now integrate by parts each term to write the integral as $\int_{x_{0}}^{x_{1}} \eta(x) L[y] d x$, hence $L[y]=0$ as required. In the integration by parts, all derivatives up to and including $\eta^{(n-1)}$ vanish at $x=x_{0}, x_{1}$. The only thing you need to convince yourselves with is the result

$$
\begin{array}{r}
\int_{x_{0}}^{x_{1}} \eta^{(n)} \frac{\partial f}{\partial y^{(n)}} d x=\left.\eta^{(n-1)} \frac{\partial f}{\partial y^{(n)}}\right|_{x_{0}} ^{x_{1}}-\int_{x_{0}}^{x_{1}} \eta^{(n-1)} \frac{d}{d x} \frac{\partial f}{\partial y^{(n)}} d x \\
=-\left.\eta^{(n-2)} \frac{d}{d x} \frac{\partial f}{\partial y^{(n)}}\right|_{x_{0}} ^{x_{1}}+\int_{x_{0}}^{x_{1}} \eta^{(n-2)} \frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{(n)}} d x=\ldots=\int_{x_{0}}^{x_{1}}(-1)^{n} \frac{d^{n}}{d x^{n}} \frac{\partial f}{\partial y^{(n)}} .
\end{array}
$$

4. Here f is a function of x, y, y^{\prime} so use the Euler equation (11). This becomes

$$
2 b y^{\prime}+2 c y-\frac{d}{d x}\left[2 a y^{\prime}+2 b y\right]=0 \quad \Rightarrow \quad a y^{\prime \prime}+a^{\prime} y^{\prime}+\left(b^{\prime}-c\right) y=0
$$

is the desired 2 nd order ODE. If $b=$ const. then this does not enter into the equation since $b^{\prime}=0$.
5. The Euler equation comes from Problem 3 with $n=2$. It is in this case

$$
32 y-\frac{d}{d x}[0]+\frac{d^{2}}{d x^{2}}\left[2 y^{\prime \prime}\right]=0 \quad \Rightarrow \quad y^{\prime \prime \prime \prime}+16 y=0
$$

Looking for solutions of the form $\exp (\lambda x)$ gives $\lambda^{4}=16$, i.e. $\lambda= \pm 2, \pm 2 i$, hence

$$
y(x)=A e^{2 x}+B e^{-2 x}+C \cos 2 x+D \sin 2 x .
$$

Now apply the boundary conditions to get A, B, C, D.
6. In this problem we are dealing with stationary values of integrals of $F \equiv F\left(x, \phi, \phi_{x}, \phi_{y}, \phi_{x y}, \phi_{x x}, \phi_{y y}\right)$. There are two independent variables x, y but F depends on derivatives of ϕ up to and including 2 nd order. In your notes we derived the Euler equations for $F\left(x, \phi, \phi_{x}, \phi_{y}\right)$; this problem extends that.

Including variations to the stationary function via $\phi(x, y)=u(x, y)+\epsilon \eta(x, y)$ leads to the integral condition $\left(I^{\prime}(\epsilon)=0\right.$ in the notation of the notes)

$$
\iint_{D}\left[\eta \frac{\partial F}{\partial \phi}+\eta_{x} \frac{\partial F}{\partial \phi_{x}}+\eta_{y} \frac{\partial F}{\partial \phi_{y}}+\eta_{x y} \frac{\partial F}{\partial \phi_{x y}}+\eta_{x x} \frac{\partial F}{\partial \phi_{x x}}+\eta_{y y} \frac{\partial F}{\partial \phi_{y y}}\right] d x d y .
$$

We need to integrate by parts to cast the integral above into the form $\iint_{D} \eta(x, y) L[\phi] d x d y$. The way to deal with the first three terms is in your notes. I will show you how to integrate the 4th term, the 5th and 6th being essentially the same. Start with defining the upper and lower boundaries of D as $y=U_{2}(x)$ and $y=U_{1}(x)$, respectively, and also the right and left boundaries by $x=R_{2}(y)$ and $x=R_{1}(y)$. Then

$$
\iint_{D} \eta_{x y} \frac{\partial F}{\partial \phi_{x y}} d x d y=\int_{x}\left[\eta_{x} \frac{\partial F}{\partial \phi_{x y}}\right]_{U_{1}(x)}^{U_{2}(x)} d x-\iint_{D} \eta_{x} \frac{\partial}{\partial y} \frac{\partial F}{\partial \phi_{x y}} d x d y
$$

The boundary terms are zero, hence the first integral on the RHS is zero. Continue with an integration by parts with respect to x now.

$$
-\iint_{D} \eta_{x} \frac{\partial}{\partial y} \frac{\partial F}{\partial \phi_{x y}} d x d y=-\int_{y}\left[\eta \frac{\partial^{2} F}{\partial y \partial \phi_{x y}}\right]_{R_{1}(y)}^{R_{2}(y)} d y+\iint_{D} \eta \frac{\partial^{3} F}{\partial x \partial y \partial \phi_{x y}} d x d y
$$

Again the boundary term is zero leaving the result

$$
\iint_{D} \eta_{x y} \frac{\partial F}{\partial \phi_{x y}} d x d y=\iint_{D} \eta \frac{\partial^{3} F}{\partial x \partial y \partial \phi_{x y}} d x d y
$$

We can get the other two integrals in a totally analogous way - note that since there is an even number of derivatives of η in each of these terms the sign of the required integral is positive. [Carry out the work for the other two terms to familiarise yourselves with the mechanics of it.] Put it all together to obtain

$$
\iint_{D} \eta(x, y)\left[\frac{\partial F}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial \phi_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial \phi_{y}}\right)+\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial F}{\partial \phi_{x y}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial \phi_{x x}}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\frac{\partial F}{\partial \phi_{y y}}\right)\right] d x d y
$$

leading to the following Euler equation (the usual arguments/Lemmas are used here)

$$
\begin{equation*}
\frac{\partial F}{\partial \phi}-\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial \phi_{x}}\right)-\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial \phi_{y}}\right)+\frac{\partial^{2}}{\partial x \partial y}\left(\frac{\partial F}{\partial \phi_{x y}}\right)+\frac{\partial^{2}}{\partial x^{2}}\left(\frac{\partial F}{\partial \phi_{x x}}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(\frac{\partial F}{\partial \phi_{y y}}\right)=0 . \tag{3}
\end{equation*}
$$

Now we are in a position to answer the problems:
(a) Here $F=\phi_{x x}^{2}+\phi_{y y}^{2}+2 \phi_{x x} \phi_{y y}$ and hence depends only on $\phi_{x x}$ and $\phi_{y y}$. The Euler equation (3) becomes, therefore,

$$
\frac{\partial^{2}}{\partial x^{2}}\left(2 \phi_{x x}+2 \phi_{y y}\right)+\frac{\partial^{2}}{\partial y^{2}}\left(2 \phi_{y y}+2 \phi_{x x}\right)=0 \quad \Rightarrow \quad \Delta^{2} \phi=0, \quad \text { where } \quad \Delta \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

The operator $\Delta^{2}=\nabla^{4}$ is called the biharmonic operator.
(b) In this case $F=\phi_{x x}^{2}+\phi_{y y}^{2}+3 \phi_{x x} \phi_{y y}-\phi_{x y}^{2}$, and the Euler equation (3) becomes

$$
\begin{aligned}
\left(-2 \phi_{x y}\right)_{x y}+\left(2 \phi_{x x}+3 \phi_{y y}\right)_{x x}+\left(2 \phi_{y y}+3 \phi_{x x}\right)_{y y}=0 \quad \Rightarrow \quad \phi_{x x x x}+2 \phi_{x x y y}+\phi_{y y y y} & =0 \\
\Rightarrow \quad \Delta^{2} \phi & =0
\end{aligned}
$$

7. We introduce a Lagrange multiplier λ and note that a, b, c are functions of x, hence the Euler equation is

$$
2 b u^{\prime}+2 c u+2 \lambda u-\frac{d}{d x}\left(2 a u^{\prime}+2 b u\right)=0 \quad \Rightarrow \quad a u^{\prime \prime}+a^{\prime} u^{\prime}+\left(b^{\prime}-c-\lambda\right) u=0
$$

is the required Euler equation.
8. First consider the general case of finding the geodesics of a given surface $G(x, y, z)=0$, say. Parametrise the curve by $x=x(t), y=y(t), z=z(t)$ and the problem is that of minimizing

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} F(x, y, z, \dot{x}, \dot{y}, \dot{z}) d t, \quad F(x, y, z, \dot{x}, \dot{y}, \dot{z})=\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}} \tag{4}
\end{equation*}
$$

subject to

$$
\begin{equation*}
G(x(t), y(t), z(t))=0 . \tag{5}
\end{equation*}
$$

In addition to (5) the required conditions are

$$
\begin{aligned}
& \frac{d}{d t} \frac{\partial F}{\partial \dot{x}}-\frac{\partial F}{\partial x}=\lambda \frac{\partial G}{\partial x} \\
& \frac{d}{d t} \frac{\partial F}{\partial \dot{y}}-\frac{\partial F}{\partial y}=\lambda \frac{\partial G}{\partial y} \\
& \frac{d}{d t} \frac{\partial F}{\partial \dot{z}}-\frac{\partial F}{\partial z}=\lambda \frac{\partial G}{\partial z}
\end{aligned}
$$

which on substituting F from (4) become

$$
\begin{align*}
& \frac{d}{d t} \frac{\dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\lambda \frac{\partial G}{\partial x} \tag{6}\\
& \frac{d}{d t} \frac{\dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\lambda \frac{\partial G}{\partial y} \tag{7}\\
& \frac{d}{d t} \frac{\dot{z}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}}}=\lambda \frac{\partial G}{\partial z} \tag{8}
\end{align*}
$$

Now for a cylinder (without loss of generality take the radius to be 1), we have

$$
\begin{equation*}
G(x, y, z)=x^{2}+y^{2}-1=0 \tag{9}
\end{equation*}
$$

i.e. G does not depend on z. This implies that (8) becomes

$$
\frac{d}{d t} \frac{\dot{z}}{\sqrt{1+\dot{z}^{2}}}=0 \quad \Rightarrow \quad \dot{z}=\text { const } .
$$

Since the cylinder is parametrised by $x=x(t)=\cos t, y=y(t)=\sin t$ (follow from (9)), and $z=z(t)=c t$ with c a constant, the solution is a helix. Equations (6) or (7) can be used to find λ.
9. Suppose that the required closed curve has parametric equations $x=x(t)$ and $y=y(t)$, $t_{0} \leq t \leq t_{1}$. From Green's theorem the enclosed area is given by

$$
\begin{equation*}
I=\frac{1}{2} \int_{t_{0}}^{t_{1}}(x \dot{y}-y \dot{x}) d t \tag{10}
\end{equation*}
$$

The constraint is that the curve has given length, i.e.

$$
\int_{t_{0}}^{t_{1}} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t=L
$$

Note that the dependent variables are now $x, \dot{x}, y \dot{y}$ and the independent variable is t. Hence, the Euler equations introducing a Lagrange multiplier are

$$
\begin{aligned}
\frac{1}{2} \dot{y}-\frac{d}{d t}\left[-\frac{1}{2} y+\frac{\lambda \dot{x}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}\right] & =0 \\
\frac{1}{2} \dot{x}+\frac{d}{d t}\left[\frac{1}{2} x+\frac{\lambda \dot{y}}{\sqrt{\dot{x}^{2}+\dot{y}^{2}}}\right] & =0
\end{aligned}
$$

Now use arc length to parametrise the curve, i.e. set $t=s$ above. For an arc length parametrisation we have

$$
x^{\prime 2}+y^{\prime 2}=1
$$

where primes denote $d / d s$, hence the differential equations become

$$
\begin{aligned}
& y^{\prime}-\lambda x^{\prime \prime}=0 \\
& x^{\prime}+\lambda y^{\prime \prime}=0
\end{aligned}
$$

Integrate these to obtain the solutions

$$
\begin{aligned}
\lambda x^{\prime} & =y+K_{1} \\
\lambda y^{\prime} & =K_{2}-x
\end{aligned}
$$

and since $x^{\prime 2}+y^{\prime 2}=1$ we have

$$
(x-\alpha)^{2}+(y-\beta)^{2}=\lambda^{2},
$$

which is the equation for a circle. The constants α, β, λ can be determined from the supplied conditions.

