M2AA2 - Multivariable Calculus. Problem Sheet 8. Solutions.
Professor D.T. Papageorgiou

Recall that the Euler equation that extremises I[y] = [ f(x,y,y')dx is
of d of
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If the function f is independent of x, then the following is an integral of the Euler equation above,
of

fly.y) - Z/aT/,(y, y') = const. (2)

These results are used in the problems that follow.

1. (a) The integrand is f(x,y,9’) = (v')?/s3. The Euler equation is, therefore,

d (2
dx ( y) = y(x):K1x4+K2.
Apply boundary conditions to find y(z) = (1/5)(—z + 1).

(b) Since f is independent of z we can use (2)), which becomes

1
V2y—o)'?=z+d = 2y-c) =(z+d)>
Apply boundary conditions to find d = 1/2, ¢ = —1/8.
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2. The Euler equation and its solution is

d y Y
-4 —0 = =
dz lx\/l—l—(y’)Q] 1+ (¥)? ¢
x2c? 1 9 9
= y—i—d:—E 1-22c2 = 2+ (@y+d)°=

N2 __

2’

Now use the boundary conditions to find ¢, d; we find d = W

either of the equations x3 + (yo + d)? = 1/c* OR 2% + (y1 + d)? = 1/c%.

with ¢ following from

3. Let us do part (b) and then part (a) is a special case. Include variations to an optimal solution
u(z) by writing y(z) = u(z) + en(x). The condition for an extremum is (see your notes)
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Now integrate by parts each term to write the integral as [ n(x)L[y|dx, hence L[y] = 0 as
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required. In the integration by parts, all derivatives up to and including n vanish at

x = xg,x1. The only thing you need to convince yourselves with is the result
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4. Here f is a function of z,y, 1y’ so use the Euler equation . This becomes

d
20y’ + 2cy — . 2ay +2by] =0 = ay’ +dy +¥ —c)y=0,
x
is the desired 2nd order ODE. If b = const. then this does not enter into the equation since
b =0.
5. The Euler equation comes from Problem 3 with n = 2. It is in this case

d d2 nn
32y — 0]+ 75 2] =0 = 4" +16y=0.

Looking for solutions of the form exp(A\z) gives A* = 16, i.e. A = £2, +2i, hence
y(x) = Ae®® + Be ** 4 C cos 2x + Dsin 2z.
Now apply the boundary conditions to get A, B, C, D.

6. In this problem we are dealing with stationary values of integrals of F' = F'(z, ¢, ¢z, by, Ouys Gzas Gyy)-
There are two independent variables x,y but F' depends on derivatives of ¢ up to and includ-
ing 2nd order. In your notes we derived the Euler equations for F(x, ¢, ¢, ¢y); this problem
extends that.

Including variations to the stationary function via ¢(x,y) = u(x,y) + en(z,y) leads to the
integral condition (I’(¢) = 0 in the notation of the notes)
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We need to integrate by parts to cast the integral above into the form [ [, n(z,y)L[¢]dxzdy.
The way to deal with the first three terms is in your notes. I will show you how to integrate
the 4th term, the 5th and 6th being essentially the same. Start with defining the upper and
lower boundaries of D as y = Us(z) and y = U;(z), respectively, and also the right and left
boundaries by z = Ra(y) and x = Ri(y). Then
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The boundary terms are zero, hence the first integral on the RHS is zero. Continue with an
integration by parts with respect to x now.
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Again the boundary term is zero leaving the result
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We can get the other two integrals in a totally analogous way - note that since there is an even
number of derivatives of 7 in each of these terms the sign of the required integral is positive.
[Carry out the work for the other two terms to familiarise yourselves with the mechanics of
it.] Put it all together to obtain
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leading to the following Euler equation (the usual arguments/Lemmas are used here)
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Now we are in a position to answer the problems:

(a) Here F' = ¢2, + qbg,y + 2¢42¢yy and hence depends only on ¢, and ¢,,. The Euler
equation becomes, therefore,
0? 0? 9 0? 0?
The operator A? = V4 is called the biharmonic operator.
n this case I’ = + + 30z — , and the Fuler equation ecomes

b) In thi F=¢2, qb?/y 302z Dyy gbiy d the Eul ion (3)) b

(_2¢$y)zy + (2¢x:c + 3¢yy)ma¢ + (2¢yy + 3¢mw)yy =0 = ¢$zx$ + 2¢zmyy + ¢yyyy =0
= A%=0

7. We introduce a Lagrange multiplier A and note that a, b, ¢ are functions of x, hence the Euler

equation is
d
2bu’ + 2cu + 2u — = (2au +2bu) =0 = au'+du+ O —c—Nu=0,
x

is the required Euler equation.

8. First consider the general case of finding the geodesics of a given surface G(z,y, z) = 0, say.
Parametrise the curve by = = x(t), y = y(¢), z = 2(t) and the problem is that of minimizing
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subject to

G(x(t), y(t), 2(t)) = 0. (5)

In addition to the required conditions are
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which on substituting F' from become
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Now for a cylinder (without loss of generality take the radius to be 1), we have
Glz,y,2) =2 +y> —1=0, (9)
i.e. G does not depend on z. This implies that becomes
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Since the cylinder is parametrised by = = z(t) = cost, y = y(t) = sint (follow from @D), and

z = z(t) = ct with ¢ a constant, the solution is a helix. Equations @ or can be used to
find A.

= z = const.

. Suppose that the required closed curve has parametric equations z = z(t) and y = y(t),
to <t <t;. From Green’s theorem the enclosed area is given by
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The constraint is that the curve has given length, i.e.
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Note that the dependent variables are now z, &, yy and the independent variable is t. Hence,
the Euler equations introducing a Lagrange multiplier are
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Now use arc length to parametrise the curve, i.e. set ¢ = s above. For an arc length
parametrisation we have
$/2 + y/2 — 1’

where primes denote d/ds, hence the differential equations become
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Integrate these to obtain the solutions

o= y+ K,
Ny = Ky—ux

and since 2’2 + y’> = 1 we have
(=) + (y - B)* = N,

which is the equation for a circle. The constants «, 3, A can be determined from the supplied
conditions.



