
M2AA2 - Multivariable Calculus. Problem Sheet 3. Solutions.
Professor D.T. Papageorgiou

1. (a) The centroid of a region S is given by x = 1
A

∫ ∫
S xdxdy, y = 1

A

∫ ∫
S ydxdy, where A is

the area of the region. Now use Green’s theorem in the plane,
∫ ∫

S(F2x − F1y)dxdy =∮
C(F1dx + F2dy) with F1 = 0, F2 = x2

2 and F1 = y2

2 , F2 = 0, respectively, to get the
required result.

(b) For S1, parametrise using x = a cos θ, y = a sin θ, to obtain x = 1
πa2

∫ 2π
0 a2 sin2 θ(cos θ)dθ =

0 with an analogous result for y.
For S2 we now have two parts contributing to C since the region is not simply connected
(see class notes on how we prove Green’s theorem for regions which are not simply
connected). Can parametrise on either one by (x, y) = r(cos θ, sin θ) with r = a or b.
Then each integral is zero as found earlier.

2. Calculate ∇·(∇φ×∇ψ) = ∇ψ ·(∇×∇φ)−∇φ·(∇×∇ψ) and since ∇×(∇φ) = 0 = ∇×(∇ψ),
the result follows.

Take ∇× 1
2(φ∇ψ − ψ∇φ) = 1

2(∇φ×∇ψ −∇ψ ×∇φ) = ∇φ×∇ψ which is what we need to
show.

3. The divergence theorem with F = u×K is
∫
V ∇ · (u×K)dV =

∫
S(u×K) ·ndS. Now use

the identity
∇ · (u×K) = K · (∇× u)− u · (∇×K) = K · (∇× u).

Next use (u×K) · n = K · (n× u), to write the divergence theorem form above as

K ·
∫
V

(∇× u)dV = K ·
∫
S

n× udS,

and since K is arbitrary the result follows.

4. The divergence theorem for φF is∫
V
∇ · (φF )dV =

∫
S
φF · ndS

i.e. ∫
V

(∇φ · F + φ∇ · F )dV = φ0

∫
S

F · ndS.

Now since ∇ · F = 0 we have
∫
V ∇ · F dV =

∫
S F · n = 0 which when substituted above give

the answer.

5. ∫
S

(r · n)dS =
∫
V
∇ · rdV = 3

∫
V
dV = 3V,

where V is the volume enclosed by S.

6. ∇ · F = 1 hence in the divergence theorem
∫
V ∇ · F dV = (2a)3, i.e. the volume of the cube.

Need to consider
∫
S F ·ndS. Normals point out of the volume, hence F ·n = a for the faces

x = ±a and F · n = 0 on all other faces. Over the face at x = ±a we have
∫
S adS = a(2a)2,

so
∫

F · ndS = 2a(2a)3 as required.
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7. Need to find
∫
S F · ndS.

(a) If O lies outside S then we have∫
S

(
−GM r · n

r3
dS

)
= −GM

∫
V
∇ ·

(
r

r3

)
dV = 0,

since ∇ ·
(

r
r3

)
= 0 if r 6= 0 as is the case here.

(b) If the origin is inside S, then we surround it by a small sphere of radius ε and call the
surface of this sphere Sε. Then ∫

S+Sε

F · n = 0,

since the result (a) holds - in the volume V − Vε we have ∇ ·
(

r
r3

)
= 0.

Hence (note that n = −r̂)∫
S

F · ndS = −
∫
Sε

F · ndS = −GM
∫
Sε

rr̂ · r̂
r3

dS = −4πGM.

This tells us that
∇ · F = −3GM

a3
δ(r).

8. We are in spherical polar coordinates and want to evaluate integrals. Hence, dS = a2 sin θdθdϕ,
and

I1 =
∫ 2π

0

∫ π

0
a4 sin3 θ cos2 ϕdθdϕ = a4

∫ 2π

0
cos2 ϕ

∫ π

0
(1− cos2 θ) sin θdθ

= a4
∫ 2π

0
cos2 ϕ

[
− cos θ +

1
3

cos3 θ

]π
0
dϕ =

4
3
a4
∫ 2π

0
cos2 ϕ =

4
3
πa4.

I3 is similar and gives

I3 =
∫ 2π

0

∫ π

0
a4 cos2 θ sin θdθdϕ = 2π

[
−1

3
a4 cos3 θ

]π
0

=
4
3
πa4.

If we consider ∫
S

(x2
1 + x2

2 + x2
3)dS = a2

∫
S
dS = 4πa4.

Now each of I1, I2 =
∫
S x

2
2dS and I3 are equal and thus 4πa4/3.
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