M2AA2 - Multivariable Calculus. Problem Sheet 3. Solutions.

Professor D.T. Papageorgiou

1. (a) The centroid of a region S is given by $\bar{x}=\frac{1}{A} \iint_{S} x d x d y, \bar{y}=\frac{1}{A} \iint_{S} y d x d y$, where A is the area of the region. Now use Green's theorem in the plane, $\iint_{S}\left(F_{2 x}-F_{1 y}\right) d x d y=$ $\oint_{C}\left(F_{1} d x+F_{2} d y\right)$ with $F_{1}=0, F_{2}=\frac{x^{2}}{2}$ and $F_{1}=\frac{y^{2}}{2}, F_{2}=0$, respectively, to get the required result.
(b) For S_{1}, parametrise using $x=a \cos \theta, y=a \sin \theta$, to obtain $\bar{x}=\frac{1}{\pi a^{2}} \int_{0}^{2 \pi} a^{2} \sin ^{2} \theta(\cos \theta) d \theta=$ 0 with an analogous result for \bar{y}.
For S_{2} we now have two parts contributing to C since the region is not simply connected (see class notes on how we prove Green's theorem for regions which are not simply connected). Can parametrise on either one by $(x, y)=r(\cos \theta, \sin \theta)$ with $r=a$ or b. Then each integral is zero as found earlier.
2. Calculate $\nabla \cdot(\nabla \phi \times \nabla \psi)=\nabla \psi \cdot(\nabla \times \nabla \phi)-\nabla \phi \cdot(\nabla \times \nabla \psi)$ and since $\nabla \times(\nabla \phi)=0=\nabla \times(\nabla \psi)$, the result follows.
Take $\nabla \times \frac{1}{2}(\phi \nabla \psi-\psi \nabla \phi)=\frac{1}{2}(\nabla \phi \times \nabla \psi-\nabla \psi \times \nabla \phi)=\nabla \phi \times \nabla \psi$ which is what we need to show.
3. The divergence theorem with $\boldsymbol{F}=\boldsymbol{u} \times \boldsymbol{K}$ is $\int_{V} \nabla \cdot(\boldsymbol{u} \times \boldsymbol{K}) d V=\int_{S}(\boldsymbol{u} \times \boldsymbol{K}) \cdot \boldsymbol{n} d S$. Now use the identity

$$
\nabla \cdot(\boldsymbol{u} \times \boldsymbol{K})=\boldsymbol{K} \cdot(\nabla \times \boldsymbol{u})-\boldsymbol{u} \cdot(\nabla \times \boldsymbol{K})=\boldsymbol{K} \cdot(\nabla \times \boldsymbol{u})
$$

Next use $(\boldsymbol{u} \times \boldsymbol{K}) \cdot \boldsymbol{n}=\boldsymbol{K} \cdot(\boldsymbol{n} \times \boldsymbol{u})$, to write the divergence theorem form above as

$$
\boldsymbol{K} \cdot \int_{V}(\nabla \times \boldsymbol{u}) d V=\boldsymbol{K} \cdot \int_{S} \boldsymbol{n} \times \boldsymbol{u} d S,
$$

and since \boldsymbol{K} is arbitrary the result follows.
4. The divergence theorem for $\phi \boldsymbol{F}$ is

$$
\int_{V} \nabla \cdot(\phi \boldsymbol{F}) d V=\int_{S} \phi \boldsymbol{F} \cdot \boldsymbol{n} d S
$$

i.e.

$$
\int_{V}(\nabla \phi \cdot \boldsymbol{F}+\phi \nabla \cdot \boldsymbol{F}) d V=\phi_{0} \int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S .
$$

Now since $\nabla \cdot \boldsymbol{F}=0$ we have $\int_{V} \nabla \cdot \boldsymbol{F} d V=\int_{S} \boldsymbol{F} \cdot \boldsymbol{n}=0$ which when substituted above give the answer.
5.

$$
\int_{S}(\boldsymbol{r} \cdot \boldsymbol{n}) d S=\int_{V} \nabla \cdot \boldsymbol{r} d V=3 \int_{V} d V=3 V
$$

where V is the volume enclosed by S.
6. $\nabla \cdot \boldsymbol{F}=1$ hence in the divergence theorem $\int_{V} \nabla \cdot \boldsymbol{F} d V=(2 a)^{3}$, i.e. the volume of the cube. Need to consider $\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S$. Normals point out of the volume, hence $\boldsymbol{F} \cdot \boldsymbol{n}=a$ for the faces $x= \pm a$ and $\boldsymbol{F} \cdot \boldsymbol{n}=0$ on all other faces. Over the face at $x= \pm a$ we have $\int_{S} a d S=a(2 a)^{2}$, so $\int \boldsymbol{F} \cdot \boldsymbol{n} d S=2 a(2 a)^{3}$ as required.
7. Need to find $\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S$.
(a) If O lies outside S then we have

$$
\int_{S}\left(-G M \frac{\boldsymbol{r} \cdot \boldsymbol{n}}{r^{3}} d S\right)=-G M \int_{V} \nabla \cdot\left(\frac{\boldsymbol{r}}{r^{3}}\right) d V=0
$$

since $\nabla \cdot\left(\frac{r}{r^{3}}\right)=0$ if $\boldsymbol{r} \neq 0$ as is the case here.
(b) If the origin is inside S, then we surround it by a small sphere of radius ϵ and call the surface of this sphere S_{ϵ}. Then

$$
\int_{S+S_{\epsilon}} \boldsymbol{F} \cdot \boldsymbol{n}=0
$$

since the result (a) holds - in the volume $V-V_{\epsilon}$ we have $\nabla \cdot\left(\frac{r}{r^{3}}\right)=0$.
Hence (note that $\boldsymbol{n}=-\hat{\boldsymbol{r}}$)

$$
\int_{S} \boldsymbol{F} \cdot \boldsymbol{n} d S=-\int_{S_{\epsilon}} \boldsymbol{F} \cdot \boldsymbol{n} d S=-G M \int_{S_{\epsilon}} \frac{r \hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{r}}}{r^{3}} d S=-4 \pi G M .
$$

This tells us that

$$
\nabla \cdot \boldsymbol{F}=-\frac{3 G M}{a^{3}} \delta(\boldsymbol{r})
$$

8. We are in spherical polar coordinates and want to evaluate integrals. Hence, $d S=a^{2} \sin \theta d \theta d \varphi$, and

$$
\begin{aligned}
I_{1} & =\int_{0}^{2 \pi} \int_{0}^{\pi} a^{4} \sin ^{3} \theta \cos ^{2} \varphi d \theta d \varphi=a^{4} \int_{0}^{2 \pi} \cos ^{2} \varphi \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \\
& =a^{4} \int_{0}^{2 \pi} \cos ^{2} \varphi\left[-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi} d \varphi=\frac{4}{3} a^{4} \int_{0}^{2 \pi} \cos ^{2} \varphi=\frac{4}{3} \pi a^{4}
\end{aligned}
$$

I_{3} is similar and gives

$$
I_{3}=\int_{0}^{2 \pi} \int_{0}^{\pi} a^{4} \cos ^{2} \theta \sin \theta d \theta d \varphi=2 \pi\left[-\frac{1}{3} a^{4} \cos ^{3} \theta\right]_{0}^{\pi}=\frac{4}{3} \pi a^{4}
$$

If we consider

$$
\int_{S}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) d S=a^{2} \int_{S} d S=4 \pi a^{4}
$$

Now each of $I_{1}, I_{2}=\int_{S} x_{2}^{2} d S$ and I_{3} are equal and thus $4 \pi a^{4} / 3$.

