M2AA2 - Multivariable Calculus. Problem Sheet 7
March 16, 2009. Prof. D.T. Papageorgiou

1. (a) Find the Green’s function

V3G = §(x — xo), >0, y>0
oG

G(0,y) =0, 8—y(m,0) =0.

(b) Use part (a) to solve the problem

6(0,9) = qly). gjj@,m = p(a).

2. Use the method of images (there will be a countably infinite number of them in the problems
that follow) to obtain the Green’s function G(x; x¢)

V3G = §(x — o)
for the following problems:

(a) On the rectangle 0 < x < L,0<y< Hif G=0at x =0 and x = L and 9G/dy = 0 at
y=0and y=H.
(b) On the infinite strip 0 < x < L, —c0o < y < 00 if G =0 at z = 0 and dG/Jy = 0 at

x=0L.
(c) On the infinite strip 0 < # < L, —o0o < y < 00, —00 < z < 00 if G =0 at z = 0 and
G=0atz=L.

(d) On the semi-infinite strip 0 < z < L, 0 < y < oo if G = 0 along the boundaries.
(e) On the semi-infinite strip 0 < z < L, —co <y < 0if G=0atx=0,G=0at x = L,
0G /0y =0 at y = 0.
3. Consider the following boundary-value problem for Laplace’s equation in a circle:
V¢ = 0, 2*+y’><R,
o(R.0) = f(0).
(a) Use separation of variables to find all possible solutions and hence show that the solution
can be written as
2m

or0) =~ [ f(a)

™ Jo

1 &
- T - 1
2 + nz::l 7 cos(f — a) | da, (1)

and justify any integration and summation interchanges that you may have performed.
(b) By summing the infinite series in show that the solution is

R2 _ 2 for f(a) -
2t Jo R?—2Rrcos(f —a)+r?

¢(T’ 9) =

This solution is known as Poisson’s integral formula.



(c) Show directly from your separation of variables solution (not the Poisson formula) that
if f(0) = 1, then the solution is ¢(r,0) = 1. Now verify that this is also the case from
the Poisson integral formula.

4. The wave equation for u(z,t) in one dimension is given by (subscripts denote partial deriva-
tives, e.g. uy = %273 etc.)

U = cQum, —oo < x <oo, t>0,
where ¢ is a real constant, and initial conditions at ¢ = 0 need to be specified also.

(a) Show that the change of independent variables (z,t) — (§,n) where £ = x—ct, n = x+ct,
casts the wave equation into

Ugny = 0. (2)
(b) Solve to deduce that the general solution of the 1-D wave equation is

where f and g are arbitrary functions which are twice continuously differentiable.

(c) If the initial conditions are
u(z,0) = (x), u(x,0)=0,
show that the general solution becomes

u(z, t) = % [ — ct) +b(x + ct)].

(d) Given that ¢ =1 and the initial condition is given by

Mx):{l if 2] <1

0 otherwise
sketch the solution at t =0, t = 1/2, t = 1, t = 2. Describe what is happening.
5. Consider the three-dimensional wave equation given by
gy = ¢ (Ugy + Uyy + Usz) —oo < x,y,z <00, t >0, (3)

where ¢ is a real constant. We wish to study spherical waves of this equation (as would be
observed, for example, as the waves propagating from a sound source in space).

(a) Write the equation in spherical polars and use radial symmetry to show that becomes
(ru)y = 02(7’u)rr, O<r<oo, t>0. (4)

(b) Use the results of Problem 4 to show that the general solution of is given by

u(r,t) = [ —ct) + glr + ct)].



10.

. Solve the following partial differential equations

Solve the differential equation

Uz + DUgy + OUyy = erty,

by reducing it to a form similar to that in Problem 5(c).

[Hint: Factor the differential operator into (a% + ﬂa%)(’ya% + 58%) where the constants
a,...,0 are to be found. Then define new variables £ and 1 which are appropriately chosen
linear combinations of x and y to simplify the left hand side.]

. Find the partial differential equation satisfied by the two-parameter family of spheres

2=1—(z—a)?—(y—b2
[What you need here is an equation connecting z, z, and z,.]
Find particular solutions of the equation

ui—}-u =1,

2
y
of the form u = f(z) + g(y).

Find particular solutions of the equation
Ugty = 1,

of the forms u = f(z) + g(y) and v = f(z)g(y).

[Hint: For Problems 9 and 10, substitute the suggested forms and then use separation of
variables ideas to get all particular solutions.]



